83 research outputs found
Graph Invariants of Vassiliev Type and Application to 4D Quantum Gravity
We consider a special class of Kauffman's graph invariants of rigid vertex
isotopy (graph invariants of Vassiliev type). They are given by a functor from
a category of colored and oriented graphs embedded into a 3-space to a category
of representations of the quasi-triangular ribbon Hopf algebra . Coefficients in expansions of them with respect to () are
known as the Vassiliev invariants of finite type. In the present paper, we
construct two types of tangle operators of vertices. One of them corresponds to
a Casimir operator insertion at a transverse double point of Wilson loops. This
paper proposes a non-perturbative generalization of Kauffman's recent result
based on a perturbative analysis of the Chern-Simons quantum field theory. As a
result, a quantum group analog of Penrose's spin network is established taking
into account of the orientation. We also deal with the 4-dimensional canonical
quantum gravity of Ashtekar. It is verified that the graph invariants of
Vassiliev type are compatible with constraints of the quantum gravity in the
loop space representation of Rovelli and Smolin.Comment: 34 pages, AMS-LaTeX, no figures,The proof of thm.5.1 has been
improve
Unsigned state models for the Jones polynomial
It is well a known and fundamental result that the Jones polynomial can be
expressed as Potts and vertex partition functions of signed plane graphs. Here
we consider constructions of the Jones polynomial as state models of unsigned
graphs and show that the Jones polynomial of any link can be expressed as a
vertex model of an unsigned embedded graph.
In the process of deriving this result, we show that for every diagram of a
link in the 3-sphere there exists a diagram of an alternating link in a
thickened surface (and an alternating virtual link) with the same Kauffman
bracket. We also recover two recent results in the literature relating the
Jones and Bollobas-Riordan polynomials and show they arise from two different
interpretations of the same embedded graph.Comment: Minor corrections. To appear in Annals of Combinatoric
Spiders for rank 2 Lie algebras
A spider is an axiomatization of the representation theory of a group,
quantum group, Lie algebra, or other group or group-like object. We define
certain combinatorial spiders by generators and relations that are isomorphic
to the representation theories of the three rank two simple Lie algebras,
namely A2, B2, and G2. They generalize the widely-used Temperley-Lieb spider
for A1. Among other things, they yield bases for invariant spaces which are
probably related to Lusztig's canonical bases, and they are useful for
computing quantities such as generalized 6j-symbols and quantum link
invariants.Comment: 33 pages. Has color figure
Entwined Paths, Difference Equations and the Dirac Equation
Entwined space-time paths are bound pairs of trajectories which are traversed
in opposite directions with respect to macroscopic time. In this paper we show
that ensembles of entwined paths on a discrete space-time lattice are simply
described by coupled difference equations which are discrete versions of the
Dirac equation. There is no analytic continuation, explicit or forced, involved
in this description. The entwined paths are `self-quantizing'. We also show
that simple classical stochastic processes that generate the difference
equations as ensemble averages are stable numerically and converge at a rate
governed by the details of the stochastic process. This result establishes the
Dirac equation in one dimension as a phenomenological equation describing an
underlying classical stochastic process in the same sense that the Diffusion
and Telegraph equations are phenomenological descriptions of stochastic
processes.Comment: 15 pages, 5 figures Replacement 11/02 contains minor editorial
change
Knots in interaction
We study the geometry of interacting knotted solitons. The interaction is
local and advances either as a three-body or as a four-body process, depending
on the relative orientation and a degeneracy of the solitons involved. The
splitting and adjoining is governed by a four-point vertex in combination with
duality transformations. The total linking number is preserved during the
interaction. It receives contributions both from the twist and the writhe,
which are variable. Therefore solitons can twine and coil and links can be
formed.Comment: figures now in GIF forma
Combinatorial expression for universal Vassiliev link invariant
The most general R-matrix type state sum model for link invariants is
constructed. It contains in itself all R-matrix invariants and is a generating
function for "universal" Vassiliev link invariants. This expression is more
simple than Kontsevich's expression for the same quantity, because it is
defined combinatorially and does not contain any integrals, except for an
expression for "the universal Drinfeld's associator".Comment: 20 page
Homotopy on spatial graphs and generalized Sato-Levine invariants
Edge-homotopy and vertex-homotopy are equivalence relations on spatial graphs
which are generalizations of Milnor's link-homotopy. Fleming and the author
introduced some edge (resp. vertex)-homotopy invariants of spatial graphs by
applying the Sato-Levine invariant for the constituent 2-component
algebraically split links. In this paper, we construct some new edge (resp.
vertex)-homotopy invariants of spatial graphs without any restriction of
linking numbers of the constituent 2-component links by applying the
generalized Sato-Levine invariant.Comment: 16 pages, 13 figure
String theory and the Kauffman polynomial
We propose a new, precise integrality conjecture for the colored Kauffman
polynomial of knots and links inspired by large N dualities and the structure
of topological string theory on orientifolds. According to this conjecture, the
natural knot invariant in an unoriented theory involves both the colored
Kauffman polynomial and the colored HOMFLY polynomial for composite
representations, i.e. it involves the full HOMFLY skein of the annulus. The
conjecture sheds new light on the relationship between the Kauffman and the
HOMFLY polynomials, and it implies for example Rudolph's theorem. We provide
various non-trivial tests of the conjecture and we sketch the string theory
arguments that lead to it.Comment: 36 pages, many figures; references and examples added, typos
corrected, final version to appear in CM
Knotlike Cosmic Strings in The Early Universe
In this paper, the knotlike cosmic strings in the Riemann-Cartan space-time
of the early universe are discussed. It has been revealed that the cosmic
strings can just originate from the zero points of the complex scalar
quintessence field. In these strings we mainly study the knotlike
configurations. Based on the integral of Chern-Simons 3-form a topological
invariant for knotlike cosmic strings is constructed, and it is shown that this
invariant is just the total sum of all the self-linking and linking numbers of
the knots family. Furthermore, it is also pointed out that this invariant is
preserved in the branch processes during the evolution of cosmic strings
- …