83 research outputs found

    Graph Invariants of Vassiliev Type and Application to 4D Quantum Gravity

    Full text link
    We consider a special class of Kauffman's graph invariants of rigid vertex isotopy (graph invariants of Vassiliev type). They are given by a functor from a category of colored and oriented graphs embedded into a 3-space to a category of representations of the quasi-triangular ribbon Hopf algebra Uq(sl(2,C))U_q(sl(2,\bf C)). Coefficients in expansions of them with respect to xx (q=exq=e^x) are known as the Vassiliev invariants of finite type. In the present paper, we construct two types of tangle operators of vertices. One of them corresponds to a Casimir operator insertion at a transverse double point of Wilson loops. This paper proposes a non-perturbative generalization of Kauffman's recent result based on a perturbative analysis of the Chern-Simons quantum field theory. As a result, a quantum group analog of Penrose's spin network is established taking into account of the orientation. We also deal with the 4-dimensional canonical quantum gravity of Ashtekar. It is verified that the graph invariants of Vassiliev type are compatible with constraints of the quantum gravity in the loop space representation of Rovelli and Smolin.Comment: 34 pages, AMS-LaTeX, no figures,The proof of thm.5.1 has been improve

    Unsigned state models for the Jones polynomial

    Full text link
    It is well a known and fundamental result that the Jones polynomial can be expressed as Potts and vertex partition functions of signed plane graphs. Here we consider constructions of the Jones polynomial as state models of unsigned graphs and show that the Jones polynomial of any link can be expressed as a vertex model of an unsigned embedded graph. In the process of deriving this result, we show that for every diagram of a link in the 3-sphere there exists a diagram of an alternating link in a thickened surface (and an alternating virtual link) with the same Kauffman bracket. We also recover two recent results in the literature relating the Jones and Bollobas-Riordan polynomials and show they arise from two different interpretations of the same embedded graph.Comment: Minor corrections. To appear in Annals of Combinatoric

    Spiders for rank 2 Lie algebras

    Full text link
    A spider is an axiomatization of the representation theory of a group, quantum group, Lie algebra, or other group or group-like object. We define certain combinatorial spiders by generators and relations that are isomorphic to the representation theories of the three rank two simple Lie algebras, namely A2, B2, and G2. They generalize the widely-used Temperley-Lieb spider for A1. Among other things, they yield bases for invariant spaces which are probably related to Lusztig's canonical bases, and they are useful for computing quantities such as generalized 6j-symbols and quantum link invariants.Comment: 33 pages. Has color figure

    Entwined Paths, Difference Equations and the Dirac Equation

    Get PDF
    Entwined space-time paths are bound pairs of trajectories which are traversed in opposite directions with respect to macroscopic time. In this paper we show that ensembles of entwined paths on a discrete space-time lattice are simply described by coupled difference equations which are discrete versions of the Dirac equation. There is no analytic continuation, explicit or forced, involved in this description. The entwined paths are `self-quantizing'. We also show that simple classical stochastic processes that generate the difference equations as ensemble averages are stable numerically and converge at a rate governed by the details of the stochastic process. This result establishes the Dirac equation in one dimension as a phenomenological equation describing an underlying classical stochastic process in the same sense that the Diffusion and Telegraph equations are phenomenological descriptions of stochastic processes.Comment: 15 pages, 5 figures Replacement 11/02 contains minor editorial change

    Knots in interaction

    Get PDF
    We study the geometry of interacting knotted solitons. The interaction is local and advances either as a three-body or as a four-body process, depending on the relative orientation and a degeneracy of the solitons involved. The splitting and adjoining is governed by a four-point vertex in combination with duality transformations. The total linking number is preserved during the interaction. It receives contributions both from the twist and the writhe, which are variable. Therefore solitons can twine and coil and links can be formed.Comment: figures now in GIF forma

    Combinatorial expression for universal Vassiliev link invariant

    Full text link
    The most general R-matrix type state sum model for link invariants is constructed. It contains in itself all R-matrix invariants and is a generating function for "universal" Vassiliev link invariants. This expression is more simple than Kontsevich's expression for the same quantity, because it is defined combinatorially and does not contain any integrals, except for an expression for "the universal Drinfeld's associator".Comment: 20 page

    Homotopy on spatial graphs and generalized Sato-Levine invariants

    Full text link
    Edge-homotopy and vertex-homotopy are equivalence relations on spatial graphs which are generalizations of Milnor's link-homotopy. Fleming and the author introduced some edge (resp. vertex)-homotopy invariants of spatial graphs by applying the Sato-Levine invariant for the constituent 2-component algebraically split links. In this paper, we construct some new edge (resp. vertex)-homotopy invariants of spatial graphs without any restriction of linking numbers of the constituent 2-component links by applying the generalized Sato-Levine invariant.Comment: 16 pages, 13 figure

    String theory and the Kauffman polynomial

    Full text link
    We propose a new, precise integrality conjecture for the colored Kauffman polynomial of knots and links inspired by large N dualities and the structure of topological string theory on orientifolds. According to this conjecture, the natural knot invariant in an unoriented theory involves both the colored Kauffman polynomial and the colored HOMFLY polynomial for composite representations, i.e. it involves the full HOMFLY skein of the annulus. The conjecture sheds new light on the relationship between the Kauffman and the HOMFLY polynomials, and it implies for example Rudolph's theorem. We provide various non-trivial tests of the conjecture and we sketch the string theory arguments that lead to it.Comment: 36 pages, many figures; references and examples added, typos corrected, final version to appear in CM

    Knotlike Cosmic Strings in The Early Universe

    Full text link
    In this paper, the knotlike cosmic strings in the Riemann-Cartan space-time of the early universe are discussed. It has been revealed that the cosmic strings can just originate from the zero points of the complex scalar quintessence field. In these strings we mainly study the knotlike configurations. Based on the integral of Chern-Simons 3-form a topological invariant for knotlike cosmic strings is constructed, and it is shown that this invariant is just the total sum of all the self-linking and linking numbers of the knots family. Furthermore, it is also pointed out that this invariant is preserved in the branch processes during the evolution of cosmic strings
    • …
    corecore