16 research outputs found

    Simulation of SVPWM Based Multivariable Control Method for a DFIG Wind Energy System

    Get PDF
    This paper deals with a variable speed device toproduce electrical energy on a power network based on adoubly-fed induction machine used in generating mode(DFIG) in wind energy system by using SVPWM powertransfer matrix. This paper presents a modeling and controlapproach which uses instantaneous real and reactive powerinstead of dq components of currents in a vector controlscheme. The main features of the proposed model comparedto conventional models in the dq frame of reference arerobustness and simplicity of realization. The sequential loopclosing technique is adopted to design a multivariable controlsystem including six compensators for a DFIG wind energysystem to capture the maximum wind power and to inject therequired reactive power to the generator. In this paperSVPWM method is used for better controlling of converters.It also provides fault ride through method to protect theconverter during a fault. The time-domain simulation of thestudy system is presented by using MATLAB Simulink to testthe system robustness, to validate the proposed model and toshow the enhanced tracking capability

    UHV-FTIRS and HR-XPS studies on defect-engineered metal-organic frameworks

    No full text
    Metall-organische GerĂŒstverbindungen (engl.: metal-organic frameworks, MOFs) sind poröse Materialien, bestehend aus anorganischen Metallzentren und organischen VerbindungsmolekĂŒlen. In dieser Arbeit prĂ€sentiere ich detaillierte Untersuchungen von intrinsischen Defekten in kupfer- und rutheniumbasierenden MOFs, bekannt als HKUST-1, sowie von beabsichtigt erzeugten Defekten in verschiedenen, defektmanipulierten Derivaten. Die Ultrahochvakuums-Infrarotspektroskopie und hochauflösende Röntgenphotoelektronenspektroskopie liefern detaillierte Informationen ĂŒber die strukturellen und elektronischen Eigenschaften der koordinativ ungesĂ€ttigten Metallzentren (engl.: coordinatively unsaturated sites, CUS) in den ursprĂŒnglichen HKUST-1-Strukturen sowie der modifizierten CUS in den defektmanipulierten MOFs. Des Weiteren stelle ich Untersuchungen in Bezug auf die reaktiven Eigenschaften mehrerer MOFs vor und diskutiere die GrĂŒnde fĂŒr deren katalytische AktivitĂ€t sowie mögliche Reaktionsmechanismen

    Multifunktionale, Defekt-manipulierte Metall-organische GerĂŒste mit Rutheniumzentren: Sorption und katalytische Eigenschaften

    Full text link
    [DE] Das Konzept der “festen Lösungen mit gemischten Linkern” (mixed-linker solid solution concept) ist angewendet worden, um die Metallzentren des gemischtvalenten RuII/III-Analogons der bekannten Familie der [M3II,II(btc)2]-MOFs (M=Cu, Mo, Cr, Ni oder Zn; btc=Benzol-1,3,5-tricarboxylat) zu modellieren und strukturelle Defekte in das GerĂŒst mit teilweise fehlenden Carboxylatliganden an den Ru2-“Schaufelradeinheiten” einzubringen. Pyridin-3,5-dicarboxylat (pydc) als zweiter, Defekt-bildender Linker von Ă€hnlicher GrĂ¶ĂŸe wie btc, aber geringerer Ladung fĂŒhrt zu einem porösen Derivat von Ru-MOF mit Eigenschaften, die sich von denen des Defekt-freien MOF unterscheiden. So bewirkt das Einbringen von pydc außer der Bildung von zusĂ€tzlichen koordinativ ungesĂ€ttigten Metallzentren auch eine partielle Reduktion des Rutheniums. Die modifizierten Ru-Zentren sind fĂŒr die AktivitĂ€t der “defekten” Varianten hinsichtlich dissoziativer Chemisorption von CO2, erhöhter CO-Sorption, Bildung von Ru-H-Spezies und katalytischer Hydrierung von Olefinen verantwortlich.Kozachuk, O.; Luz Minguez, I.; LlabrĂ©s I Xamena, FX.; Noei, H.; Kauer, M.; Bauke Albada, H.; Bloch, ED.... (2014). Multifunktionale, Defekt-manipulierte Metall-organische GerĂŒste mit Rutheniumzentren: Sorption und katalytische Eigenschaften. Angewandte Chemie. 126(27):7178-7182. doi:10.1002/ange.2013111287178718212627Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444-1230444. doi:10.1126/science.1230444Chem. Soc. Rev. 2009 38Chem. Soc. Rev. 2011 40Chem. Rev. 2012 112Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924Uemura, T., Uchida, N., Higuchi, M., & Kitagawa, S. (2011). Effects of Unsaturated Metal Sites on Radical Vinyl Polymerization in Coordination Nanochannels. Macromolecules, 44(8), 2693-2697. doi:10.1021/ma200310xFu, Y.-Y., Yang, C.-X., & Yan, X.-P. (2012). Control of the Coordination Status of the Open Metal Sites in Metal–Organic Frameworks for High Performance Separation of Polar Compounds. Langmuir, 28(17), 6794-6802. doi:10.1021/la300298eChui, S. S. (1999). A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science, 283(5405), 1148-1150. doi:10.1126/science.283.5405.1148Kramer, M., Schwarz, U., & Kaskel, S. (2006). Synthesis and properties of the metal-organic framework Mo3(BTC)2 (TUDMOF-1). Journal of Materials Chemistry, 16(23), 2245. doi:10.1039/b601811dMurray, L. J., Dinca, M., Yano, J., Chavan, S., Bordiga, S., Brown, C. M., & Long, J. R. (2010). Highly-Selective and Reversible O2Binding in Cr3(1,3,5-benzenetricarboxylate)2. Journal of the American Chemical Society, 132(23), 7856-7857. doi:10.1021/ja1027925Maniam, P., & Stock, N. (2011). Investigation of Porous Ni-Based Metal–Organic Frameworks Containing Paddle-Wheel Type Inorganic Building Units via High-Throughput Methods. Inorganic Chemistry, 50(11), 5085-5097. doi:10.1021/ic200381fFeldblyum, J. I., Liu, M., Gidley, D. W., & Matzger, A. J. (2011). Reconciling the Discrepancies between Crystallographic Porosity and Guest Access As Exemplified by Zn-HKUST-1. Journal of the American Chemical Society, 133(45), 18257-18263. doi:10.1021/ja2055935Huang, L. (2003). Synthesis, morphology control, and properties of porous metal–organic coordination polymers. Microporous and Mesoporous Materials, 58(2), 105-114. doi:10.1016/s1387-1811(02)00609-1Marx, S., Kleist, W., & Baiker, A. (2011). Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives. Journal of Catalysis, 281(1), 76-87. doi:10.1016/j.jcat.2011.04.004Park, T.-H., Hickman, A. J., Koh, K., Martin, S., Wong-Foy, A. G., Sanford, M. S., & Matzger, A. J. (2011). Highly Dispersed Palladium(II) in a Defective Metal–Organic Framework: Application to C–H Activation and Functionalization. Journal of the American Chemical Society, 133(50), 20138-20141. doi:10.1021/ja2094316St. Petkov, P., Vayssilov, G. N., Liu, J., Shekhah, O., Wang, Y., Wöll, C., & Heine, T. (2012). Defects in MOFs: A Thorough Characterization. ChemPhysChem, 13(8), 2025-2029. doi:10.1002/cphc.201200222Chizallet, C., Lazare, S., Bazer-Bachi, D., Bonnier, F., Lecocq, V., Soyer, E., 
 Bats, N. (2010). Catalysis of Transesterification by a Nonfunctionalized Metal−Organic Framework: Acido-Basicity at the External Surface of ZIF-8 Probed by FTIR andab InitioCalculations. Journal of the American Chemical Society, 132(35), 12365-12377. doi:10.1021/ja103365sLlabrĂ©s i Xamena, F. X., Cirujano, F. G., & Corma, A. (2012). An unexpected bifunctional acid base catalysis in IRMOF-3 for Knoevenagel condensation reactions. Microporous and Mesoporous Materials, 157, 112-117. doi:10.1016/j.micromeso.2011.12.058Ravon, U., Savonnet, M., Aguado, S., Domine, M. E., Janneau, E., & Farrusseng, D. (2010). Engineering of coordination polymers for shape selective alkylation of large aromatics and the role of defects. Microporous and Mesoporous Materials, 129(3), 319-329. doi:10.1016/j.micromeso.2009.06.008Vermoortele, F., Bueken, B., Le Bars, G., Van de Voorde, B., Vandichel, M., Houthoofd, K., 
 De Vos, D. E. (2013). Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, 135(31), 11465-11468. doi:10.1021/ja405078uKozachuk, O., Yusenko, K., Noei, H., Wang, Y., Walleck, S., Glaser, T., & Fischer, R. A. (2011). Solvothermal growth of a ruthenium metal–organic framework featuring HKUST-1 structure type as thin films on oxide surfaces. Chemical Communications, 47(30), 8509. doi:10.1039/c1cc11107hNoei, H., Kozachuk, O., Amirjalayer, S., Bureekaew, S., Kauer, M., Schmid, R., 
 Wang, Y. (2013). CO Adsorption on a Mixed-Valence Ruthenium Metal–Organic Framework Studied by UHV-FTIR Spectroscopy and DFT Calculations. The Journal of Physical Chemistry C, 117(11), 5658-5666. doi:10.1021/jp3056366Burrows, A. D. (2011). Mixed-component metal–organic frameworks (MC-MOFs): enhancing functionality through solid solution formation and surface modifications. CrystEngComm, 13(11), 3623. doi:10.1039/c0ce00568aWang, Y., Glenz, A., Muhler, M., & Wöll, C. (2009). A new dual-purpose ultrahigh vacuum infrared spectroscopy apparatus optimized for grazing-incidence reflection as well as for transmission geometries. Review of Scientific Instruments, 80(11), 113108. doi:10.1063/1.3257677RaskĂł, J. (1998). Catalysis Letters, 56(1), 11-15. doi:10.1023/a:1019072021006Usubharatana, P., McMartin, D., Veawab, A., & Tontiwachwuthikul, P. (2006). Photocatalytic Process for CO2Emission Reduction from Industrial Flue Gas Streams. Industrial & Engineering Chemistry Research, 45(8), 2558-2568. doi:10.1021/ie0505763Indrakanti, V. P., Kubicki, J. D., & Schobert, H. H. (2009). Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy & Environmental Science, 2(7), 745. doi:10.1039/b822176fMori, K., Yamashita, H., & Anpo, M. (2012). Photocatalytic reduction of CO2 with H2O on various titanium oxide photocatalysts. RSC Advances, 2(8), 3165. doi:10.1039/c2ra01332kKumar, B., Llorente, M., Froehlich, J., Dang, T., Sathrum, A., & Kubiak, C. P. (2012). Photochemical and Photoelectrochemical Reduction of CO2. Annual Review of Physical Chemistry, 63(1), 541-569. doi:10.1146/annurev-physchem-032511-143759Benson, E. E., Kubiak, C. P., Sathrum, A. J., & Smieja, J. M. (2009). Electrocatalytic and homogeneous approaches to conversion of CO2to liquid fuels. Chem. Soc. Rev., 38(1), 89-99. doi:10.1039/b804323jWang, C., Xie, Z., deKrafft, K. E., & Lin, W. (2011). Doping Metal–Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis. Journal of the American Chemical Society, 133(34), 13445-13454. doi:10.1021/ja203564wFu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., & Li, Z. (2012). An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction. Angewandte Chemie, 124(14), 3420-3423. doi:10.1002/ange.201108357Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., & Li, Z. (2012). An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction. Angewandte Chemie International Edition, 51(14), 3364-3367. doi:10.1002/anie.201108357Tsukahara, Y., Wada, T., & Tanaka, K. (2010). Redox Behavior of Ruthenium(Bipyridine)(Terpyridine)(Carbonyl) Complex-modified Carbon Electrode and Reactivity toward Electrochemical Reduction of CO2. Chemistry Letters, 39(11), 1134-1135. doi:10.1246/cl.2010.1134Chen, Z., Chen, C., Weinberg, D. R., Kang, P., Concepcion, J. J., Harrison, D. P., 
 Meyer, T. J. (2011). Electrocatalytic reduction of CO2 to CO by polypyridyl ruthenium complexes. Chemical Communications, 47(47), 12607. doi:10.1039/c1cc15071ePlanas, N., Ono, T., Vaquer, L., MirĂł, P., Benet-Buchholz, J., Gagliardi, L., 
 Llobet, A. (2011). Carbon dioxide reduction by mononuclear ruthenium polypyridyl complexes. Physical Chemistry Chemical Physics, 13(43), 19480. doi:10.1039/c1cp22814eJain, S. L., & Sain, B. (2002). Ruthenium catalyzed oxidation of tertiary nitrogen compounds with molecular oxygen: an easy access to N-oxides under mild conditions. Chemical Communications, (10), 1040-1041. doi:10.1039/b202744pKaesz, H. D., & Saillant, R. B. (1972). Hydride complexes of the transition metals. Chemical Reviews, 72(3), 231-281. doi:10.1021/cr60277a003Sellmann, D., Prakash, R., Heinemann, F. W., Moll, M., & Klimowicz, M. (2004). Heterolytic Cleavage of H2 at a Sulfur-Bridged Dinuclear Ruthenium Center. Angewandte Chemie, 116(14), 1913-1916. doi:10.1002/ange.200453717Sellmann, D., Prakash, R., Heinemann, F. W., Moll, M., & Klimowicz, M. (2004). Heterolytic Cleavage of H2 at a Sulfur-Bridged Dinuclear Ruthenium Center. Angewandte Chemie International Edition, 43(14), 1877-1880. doi:10.1002/anie.200453717Wang, X., & Andrews, L. (2009). Infrared Spectra and Theoretical Calculations for Fe, Ru, and Os Metal Hydrides and Dihydrogen Complexes. The Journal of Physical Chemistry A, 113(3), 551-563. doi:10.1021/jp806845hLAU, C., NG, S., JIA, G., & LIN, Z. (2007). Some ruthenium hydride, dihydrogen, and dihydrogen-bonded complexes in catalytic reactions. Coordination Chemistry Reviews, 251(17-20), 2223-2237. doi:10.1016/j.ccr.2006.12.001Yamaguchi, K., & Mizuno, N. (2003). Angewandte Chemie, 115(13), 1518-1521. doi:10.1002/ange.200250779Yamaguchi, K., & Mizuno, N. (2003). Efficient Heterogeneous Aerobic Oxidation of Amines by a Supported Ruthenium Catalyst. Angewandte Chemie International Edition, 42(13), 1480-1483. doi:10.1002/anie.200250779Su, F., Lee, F. Y., Lv, L., Liu, J., Tian, X. N., & Zhao, X. S. (2007). Sandwiched Ruthenium/Carbon Nanostructures for Highly Active Heterogeneous Hydrogenation. Advanced Functional Materials, 17(12), 1926-1931. doi:10.1002/adfm.200700067Over, H. (2012). Surface Chemistry of Ruthenium Dioxide in Heterogeneous Catalysis and Electrocatalysis: From Fundamental to Applied Research. Chemical Reviews, 112(6), 3356-3426. doi:10.1021/cr200247nMiura, H., Wada, K., Hosokawa, S., Sai, M., Kondo, T., & Inoue, M. (2009). A heterogeneous Ru/CeO2 catalyst effective for transfer-allylation from homoallyl alcohols to aldehydes. Chemical Communications, (27), 4112. doi:10.1039/b901830aTannenbaum, R. (1994). Three-Dimensional Coordination Polymers of Ruthenium(2+) with 1,4-Diisocyanobenzene Ligands and Their Catalytic Activity. Chemistry of Materials, 6(4), 550-555. doi:10.1021/cm00040a034Tannenbaum, R. (1996). Radiation enhancement of the catalytic properties of three-dimensional coordination polymers of Ru(II) with diisocyanide ligands. Journal of Molecular Catalysis A: Chemical, 107(1-3), 207-215. doi:10.1016/1381-1169(95)00221-9Sato, T., Mori, W., Nozaki Kato, C., Ohmura, T., Sato, T., Yokoyama, K., 
 Naito, S. (2003). Microporous Rhodium(II) 4,4â€Č,4″,4″â€Č-(21H,23H-porphine-5,10,15,20-tetrayl)tetrakisbenzoate. Synthesis, Nitrogen Adsorption Properties, and Catalytic Performance for Hydrogenation of Olefin. Chemistry Letters, 32(9), 854-855. doi:10.1246/cl.2003.854SATO, T., MORI, W., KATO, C., YANAOKA, E., KURIBAYASHI, T., OHTERA, R., & SHIRAISHI, Y. (2005). Novel microporous rhodium(II) carboxylate polymer complexes containing metalloporphyrin: syntheses and catalytic performances in hydrogenation of olefins. Journal of Catalysis, 232(1), 186-198. doi:10.1016/j.jcat.2005.02.00

    Notch is active in Langerhans Cell Histiocytosis and confers pathognomonic features on dendritic cells

    No full text
    Langerhans cell histiocytosis (LCH) is an enigmatic disease defined by the accumulation of Langerhans-cell-like dendritic cells (DC). Here we demonstrate that LCH cells exhibit a unique transcription profile that separates them not only from plasmacytoid and myeloid DC but also from epidermal Langerhans cells, indicating a distinct DC entity. Molecular analysis revealed that isolated as well as tissue bound LCH-cells selectively express Notch ligand Jagged 2 (JAG2) and are the only DC that express both Notch ligand and its receptor. We further show that JAG2 signaling induces key LCH-cell markers in monocyte-derived DC, suggesting a functional role of Notch signaling in LCH ontogenesis. Notably, JAG2 also induced matrix-metalloproteinases 1 and 12, which are highly expressed in LCH and may account for tissue destruction in LCH lesions. This induction was selective for DC and not recapitulated in monocytes. Together these findings suggest that JAG2 mediated Notch activation confers phenotypic and functional aspects of LCH to DC. Thus, interference with Notch signaling may prove an attractive strategy to combat this disease
    corecore