87 research outputs found

    Plasma Elaidic Acid Level as Biomarker of Industrial Trans Fatty Acids and Risk of Weight Change: Report from the EPIC Study

    Get PDF
    Background Few epidemiological studies have examined the association between dietary trans fatty acids and weight gain, and the evidence remains inconsistent. The main objective of the study was to investigate the prospective association between biomarker of industrial trans fatty acids and change in weight within the large study European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Methods Baseline plasma fatty acid concentrations were determined in a representative EPIC sample from the 23 participating EPIC centers. A total of 1,945 individuals were followed for a median of 4.9 years to monitor weight change. The association between elaidic acid level and percent change of weight was investigated using a multinomial logistic regression model, adjusted by length of follow-up, age, energy, alcohol, smoking status, physical activity, and region. Results In women, doubling elaidic acid was associated with a decreased risk of weight loss (odds ratio (OR) = 0.69, 95% confidence interval (CI) = 0.55-0.88, p = 0.002) and a trend was observed with an increased risk of weight gain during the 5-year follow-up (OR = 1.23, 95% CI = 0.97-1.56, p = 0.082) (p-trend<.0001). In men, a trend was observed for doubling elaidic acid level and risk of weight loss (OR = 0.82, 95% CI = 0.66-1.01, p = 0.062) while no significant association was found with risk of weight gain during the 5-year follow-up (OR = 1.08, 95% CI = 0.88-1.33, p = 0.454). No association was found for saturated and cis-monounsaturated fatty acids. Conclusions These data suggest that a high intake of industrial trans fatty acids may decrease the risk of weight loss, particularly in women. Prevention of obesity should consider limiting the consumption of highly processed foods, the main source of industrially-produced trans fatty acids

    Utilizing high-throughput experimentation to enhance specific productivity of an E.coli T7 expression system by phosphate limitation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The specific productivity of cultivation processes can be optimized, amongst others, by using genetic engineering of strains, choice of suitable host/vector systems or process optimization (e.g. choosing the right induction time). A further possibility is to reduce biomass buildup in favor of an enhanced product formation, e.g. by limiting secondary substrates in the medium, such as phosphate. However, with conventional techniques (e.g. small scale cultivations in shake flasks), it is very tedious to establish optimal conditions for cell growth and protein expression, as the start of protein expression (induction time) and the degree of phosphate limitation have to be determined in numerous concerted, manually conducted experiments.</p> <p>Results</p> <p>We investigated the effect of different induction times and a concurrent phosphate limitation on the specific productivity of the T7 expression system <it>E.coli </it>BL21(DE3) pRhotHi-2-EcFbFP, which produces the model fluorescence protein EcFbFP upon induction. Therefore, specific online-monitoring tools for small scale cultivations (RAMOS, BioLector) as well as a novel cultivation platform (Robo-Lector) were used for rapid process optimization. The RAMOS system monitored the oxygen transfer rate in shake flasks, whereas the BioLector device allowed to monitor microbial growth and the production of EcFbFP in microtiter plates. The Robo-Lector is a combination of a BioLector and a pipetting robot and can conduct high-throughput experiments fully automated. By using these tools, it was possible to determine the optimal induction time and to increase the specific productivity for EcFbFP from 22% (for unlimited conditions) to 31% of total protein content of the <it>E.coli </it>cells via a phosphate limitation.</p> <p>Conclusions</p> <p>The results revealed that a phosphate limitation at the right induction time was suitable to redirect the available cellular resources during cultivation to protein expression rather than in biomass production. To our knowledge, such an effect was shown for the first time for an IPTG-inducible expression system. Finally, this finding and the utilization of the introduced high-throughput experimentation approach could help to find new targets to further enhance the production capacity of recombinant <it>E.coli</it>-strains.</p

    Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk

    Get PDF
    The CDKN2A (p16) gene plays a key role in pancreatic cancer etiology. It is one of the most commonly somatically mutated genes in pancreatic cancer, rare germline mutations have been found to be associated with increased risk of developing familiar pancreatic cancer and CDKN2A promoter hyper-methylation has been suggested to play a critical role both in pancreatic cancer onset and prognosis. In addition several unrelated SNPs in the 9p21.3 region, that includes the CDNK2A, CDNK2B and the CDNK2B-AS1 genes, are associated with the development of cancer in various organs. However, association between the common genetic variability in this region and pancreatic cancer risk is not clearly understood. We sought to fill this gap in a case-control study genotyping 13 single nucleotide polymorphisms (SNPs) in 2,857 pancreatic ductal adenocarcinoma (PDAC) patients and 6,111 controls in the context of the Pancreatic Disease Research (PANDoRA) consortium. We found that the A allele of the rs3217992 SNP was associated with an increased pancreatic cancer risk (ORhet=1.14, 95% CI 1.01-1.27, p=0.026, ORhom=1.30, 95% CI 1.12-1.51, p=0.00049). This pleiotropic variant is reported to be a mir-SNP that, by changing the binding site of one or more miRNAs, could influence the normal cell cycle progression and in turn increase PDAC risk. In conclusion, we observed a novel association in a pleiotropic region that has been found to be of key relevance in the susceptibility to various types of cancer and diabetes suggesting that the CDKN2A/B locus could represent a genetic link between diabetes and pancreatic cancer risk

    Diet and BMI correlate with metabolite patterns associated with aggressive prostate cancer

    Get PDF
    Three metabolite patterns have previously shown prospective inverse associations with the risk of aggressive prostate cancer within the European Prospective Investigation into Cancer and Nutrition (EPIC). Here, we investigated dietary and lifestyle correlates of these three prostate cancer-related metabolite patterns, which included: 64 phosphatidylcholines and three hydroxysphingomyelins (Pattern 1), acylcarnitines C18:1 and C18:2, glutamate, ornithine, and taurine (Pattern 2), and 8 lysophosphatidylcholines (Pattern 3). In a two-stage cross-sectional discovery (n = 2524) and validation (n = 518) design containing 3042 men free of cancer in EPIC, we estimated the associations of 24 dietary and lifestyle variables with each pattern and the contributing individual metabolites. Associations statistically significant after both correction for multiple testing (False Discovery Rate = 0.05) in the discovery set and at p < 0.05 in the validation set were considered robust. Intakes of alcohol, total fish products, and its subsets total fish and lean fish were positively associated with Pattern 1. Body mass index (BMI) was positively associated with Pattern 2, which appeared to be driven by a strong positive BMI-glutamate association. Finally, both BMI and fatty fish were inversely associated with Pattern 3. In conclusion, these results indicate associations of fish and its subtypes, alcohol, and BMI with metabolite patterns that are inversely associated with risk of aggressive prostate cance

    Dietary intake and plasma phospholipid concentrations of saturated, monounsaturated and trans fatty acids and colorectal cancer risk in the EPIC cohort

    Get PDF
    Epidemiologic studies examining the association between specific fatty acids and colorectal cancer (CRC) risk are inconclusive. We investigated the association between dietary estimates and plasma levels of individual and total saturated (SFA), monounsaturated (MUFA), industrial‐processed trans (iTFA), and ruminant‐sourced trans (rTFA) fatty acids, and CRC risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Baseline fatty acid intakes were estimated in 450,112 participants (6,162 developed CRC, median follow‐up=15 years). In a nested case‐control study, plasma phospholipid fatty acids were determined by gas chromatography in 433 colon cancer cases and 433 matched controls. Multivariable‐adjusted hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CIs) were computed using Cox and conditional logistic regression, respectively. Dietary total SFA (highest vs. lowest quintile, HRQ5vs.Q1=0.80; 95%CI:0.69‐0.92), myristic acid (HRQ5vs.Q1=0.83, 95%CI:0.74‐0.93) and palmitic acid (HRQ5vs.Q1=0.81, 95%CI:0.70‐0.93) were inversely associated with CRC risk. Plasma myristic acid was also inversely associated with colon cancer risk (highest vs. lowest quartile, ORQ4vs.Q1=0.51; 95%CI:0.32‐0.83), whereas a borderline positive association was found for plasma stearic acid (ORQ4vs.Q1=1.63; 95%CI:1.00‐2.64). Dietary total MUFA was inversely associated with colon cancer (per one‐standard deviation increment, HR1‐SD=0.92, 95%CI: 0.85‐0.98), but not rectal cancer (HR1‐SD=1.04, 95%CI:0.95‐1.15, Pheterogeneity=0.027). Dietary iTFA, and particularly elaidic acid, was positively associated with rectal cancer (HR1‐SD =1.07, 95%CI:1.02‐1.13). Our results suggest that total and individual saturated fatty acids and fatty acids of industrial origin may be relevant to the aetiology of CRC. Both dietary and plasma myristic acid levels were inversely associated with colon cancer risk, which warrants further investigation

    Dietary amino acids and risk of stroke subtypes: a prospective analysis of 356,000 participants in seven European countries

    Get PDF
    Purpose Previously reported associations of protein-rich foods with stroke subtypes have prompted interest in the assessment of individual amino acids. We examined the associations of dietary amino acids with risks of ischaemic and haemorrhagic stroke in the EPIC study. Methods We analysed data from 356,142 participants from seven European countries. Dietary intakes of 19 individual amino acids were assessed using validated country-specific dietary questionnaires, calibrated using additional 24-h dietary recalls. Multivariable-adjusted Cox regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) of ischaemic and haemorrhagic stroke in relation to the intake of each amino acid. The role of blood pressure as a potential mechanism was assessed in 267,642 (75%) participants. Results After a median follow-up of 12.9 years, 4295 participants had an ischaemic stroke and 1375 participants had a haemorrhagic stroke. After correction for multiple testing, a higher intake of proline (as a percent of total protein) was associated with a 12% lower risk of ischaemic stroke (HR per 1 SD higher intake 0.88; 95% CI 0.82, 0.94). The association persisted after mutual adjustment for all other amino acids, systolic and diastolic blood pressure. The inverse associations of isoleucine, leucine, valine, phenylalanine, threonine, tryptophan, glutamic acid, serine and tyrosine with ischaemic stroke were each attenuated with adjustment for proline intake. For haemorrhagic stroke, no statistically significant associations were observed in the continuous analyses after correcting for multiple testing. Conclusion Higher proline intake may be associated with a lower risk of ischaemic stroke, independent of other dietary amino acids and blood pressure

    Physical activity attenuates but does not eliminate coronary heart disease risk amongst adults with risk factors: EPIC-CVD case-cohort study

    Get PDF
    Aims This study aimed to evaluate the association between physical activity and the incidence of coronary heart disease (CHD) in individuals with and without CHD risk factors. Methods and results EPIC-CVD is a case-cohort study of 29 333 participants that included 13 582 incident CHD cases and a randomly selected sub-cohort nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Self-reported physical activity was summarized using the Cambridge physical activity index (inactive, moderately inactive, moderately active, and active). Participants were categorized into sub-groups based on the presence or the absence of the following risk factors: obesity (body mass index ≥30 kg/m2), hypercholesterolaemia (total cholesterol ≥6.2 mmol/L), history of diabetes, hypertension (self-reported or ≥140/90 mmHg), and current smoking. Prentice-weighted Cox regression was used to assess the association between physical activity and incident CHD events (non-fatal and fatal). Compared to inactive participants without the respective CHD risk factor (referent), excess CHD risk was highest in physically inactive and lowest in moderately active participants with CHD risk factors. Corresponding excess CHD risk estimates amongst those with obesity were 47% [95% confidence interval (CI) 32–64%] and 21% (95%CI 2–44%), with hypercholesterolaemia were 80% (95%CI 55–108%) and 48% (95%CI 22–81%), with hypertension were 80% (95%CI 65–96%) and 49% (95%CI 28–74%), with diabetes were 142% (95%CI 63–260%), and 100% (95%CI 32–204%), and amongst smokers were 152% (95%CI 122–186%) and 109% (95%CI 74–150%). Conclusions In people with CHD risk factors, moderate physical activity, equivalent to 40 mins of walking per day, attenuates but does not completely offset CHD risk

    Corneal confocal microscopy detects a reduction in corneal endothelial cells and nerve fibres in patients with acute ischemic stroke

    Get PDF
    YesEndothelial dysfunction and damage underlie cerebrovascular disease and ischemic stroke. We undertook corneal confocal microscopy (CCM) to quantify corneal endothelial cell and nerve morphology in 146 patients with an acute ischemic stroke and 18 age-matched healthy control participants. Corneal endothelial cell density was lower (P<0.001) and endothelial cell area (P<0.001) and perimeter (P<0.001) were higher, whilst corneal nerve fbre density (P<0.001), corneal nerve branch density (P<0.001) and corneal nerve fbre length (P=0.001) were lower in patients with acute ischemic stroke compared to controls. Corneal endothelial cell density, cell area and cell perimeter correlated with corneal nerve fber density (P=0.033, P=0.014, P=0.011) and length (P=0.017, P=0.013, P=0.008), respectively. Multiple linear regression analysis showed a signifcant independent association between corneal endothelial cell density, area and perimeter with acute ischemic stroke and triglycerides. CCM is a rapid non-invasive ophthalmic imaging technique, which could be used to identify patients at risk of acute ischemic stroke.Qatar National Research Fund Grant BMRP2003865

    Erweiterung des V-Modells ®

    No full text
    corecore