34 research outputs found

    Predominant Role of Nuclear Versus Membrane Estrogen Receptor α in Arterial Protection: Implications for Estrogen Receptor α Modulation in Cardiovascular Prevention/Safety

    Get PDF
    BACKGROUND: Although estrogen receptor α (ERα) acts primarily as a transcription factor, it can also elicit membrane-initiated steroid signaling. Pharmacological tools and transgenic mouse models previously highlighted the key role of ERα membrane-initiated steroid signaling in 2 actions of estrogens in the endothelium: increase in NO production and acceleration of reendothelialization. METHODS AND RESULTS: Using mice with ERα mutated at cysteine 451 (ERaC451A), recognized as the key palmitoylation site required for ERα plasma membrane location, and mice with disruption of nuclear actions because of inactivation of activation function 2 (ERaAF20 = ERaAF2°), we sought to fully characterize the respective roles of nuclear membrane-initiated steroid signaling in the arterial protection conferred by ERα. ERaC451A mice were fully responsive to estrogens to prevent atheroma and angiotensin II-induced hypertension as well as to allow flow-mediated arteriolar remodeling. By contrast, ERαAF20 mice were unresponsive to estrogens for these beneficial vascular effects. Accordingly, selective activation of nuclear ERα with estetrol was able to prevent hypertension and to restore flow-mediated arteriolar remodeling. CONCLUSIONS: Altogether, these results reveal an unexpected prominent role of nuclear ERα in the vasculoprotective action of estrogens with major implications in medicine, particularly for selective nuclear ERα agonist, such as estetrol, which is currently under development as a new oral contraceptive and for hormone replacement therapy in menopausal women

    Mutation of the palmitoylation site of estrogen receptor alpha in vivo reveals tissue-specific roles for membrane versus nuclear actions

    Get PDF
    Estrogen receptor alpha (ERalpha) activation functions AF-1 and AF-2 classically mediate gene transcription in response to estradiol (E2). A fraction of ERalpha is targeted to plasma membrane and elicits membrane-initiated steroid signaling (MISS), but the physiological roles of MISS in vivo are poorly understood. We therefore generated a mouse with a point mutation of the palmitoylation site of ERalpha (C451A-ERalpha) to obtain membrane-specific loss of function of ERalpha. The abrogation of membrane localization of ERalpha in vivo was confirmed in primary hepatocytes, and it resulted in female infertility with abnormal ovaries lacking corpora lutea and increase in luteinizing hormone levels. In contrast, E2 action in the uterus was preserved in C451A-ERalpha mice and endometrial epithelial proliferation was similar to wild type. However, E2 vascular actions such as rapid dilatation, acceleration of endothelial repair, and endothelial NO synthase phosphorylation were abrogated in C451A-ERalpha mice. A complementary mutant mouse lacking the transactivation function AF-2 of ERalpha (ERalpha-AF2(0)) provided selective loss of function of nuclear ERalpha actions. In ERalpha-AF2(0), the acceleration of endothelial repair in response to estrogen-dendrimer conjugate, which is a membrane-selective ER ligand, was unaltered, demonstrating integrity of MISS actions. In genome-wide analysis of uterine gene expression, the vast majority of E2-dependent gene regulation was abrogated in ERalpha-AF2(0), whereas in C451A-ERalpha it was nearly fully preserved, indicating that membrane-to-nuclear receptor cross-talk in vivo is modest in the uterus. Thus, this work genetically segregated membrane versus nuclear actions of a steroid hormone receptor and demonstrated their in vivo tissue-specific roles

    Experimental versus predicted affinities for ligand binding to estrogen receptor: Iterative selection and rescoring of docked

    No full text
    The computational determination of binding modes for a ligand into a protein receptor is much more successful than the prediction of relative binding affinities (RBAs) for a set of ligands. Here we consider the binding of a set of 26 synthetic A-CD ligands into the estrogen receptor ERα. We show that the MOE default scoring function (London dG) used to rank the docked poses leads to a negligible correlation with experimental RBAs. However, switching to an energy-based scoring function, using a multiple linear regression to fit experimental RBAs, selecting top-ranked poses and then iteratively repeating this process leads to exponential convergence in 4-7 iterations and a very strong correlation. The method is robust, as shown by various validation tests. This approach may be of general use in improving the quality of predicted binding affinities
    corecore