178 research outputs found

    Some aspects of optical feedback with cadmium sulfide and related photoconductors

    Get PDF
    A primary limitation of many solid state photoconductors used in electro-optical systems is their slow response in converting varying light intensities into electrical signals. An optical feedback technique is presented which can extend the frequency response of systems that use these detectors by orders of magnitude without adversely affecting overall signal-to-noise ratio performance. The technique is analyzed to predict the improvement possible and a system is implemented using cadmium sulfide to demonstrate the effectiveness of the technique and the validity of the analysis

    Sensitivity studies and laboratory measurements for the laser heterodyne spectrometer experiment

    Get PDF
    Several experiments involving spectral scanning interferometers and gas filter correlation radiometers (ref. 2) using limb scanning solar occultation techniques under development for measurements of stratospheric trace gases from Spacelab and satellite platforms are described. An experiment to measure stratospheric trace constituents by Laser Heterodyne Spectroscopy, a summary of sensitivity analyses, and supporting laboratory measurements are presented for O3, ClO, and H2O2 in which the instrument transfer function is modeled using a detailed optical receiver design

    Automatic focus control for facsimile cameras

    Get PDF
    An electronic circuit for controlling the focus of facsimile cameras is described. The circuit consists of balanced a.c. amplifiers, two square law function generators, and a differential amplifier and power drive. The invention includes a method for maintaining the imaging sensor at the expected location of the focal plane as the facsimile camera scans a scene or terrain. A block diagram of the electronic circuitry is provided

    Device for measuring the contour of a surface

    Get PDF
    Light from a source is imaged by a lens onto a surface so that the energy from the source is concentrated into a spot. As the spot across the surface is scanned, the surface moves relative to the point of perfect focus. When the surface moves away from perfect focus the spot increases in size, while the total energy in the spot remains virtually constant. The lens then reimages the light reflected by the surface onto two detectors through two different sized apertures. The light energy going to the two detectors is separated by a beam splitter. This second path of the light energy through the lens further defocuses the spot, but as a result of the different sizes of the apertures in each light detector path, the amount of defocus for each is different. The ratio of the outputs of the two detectors which are indicative of the contour of the surface is obtained by a divider

    Signal-to-noise ratio analysis and evaluation of the Hadamard imaging technique

    Get PDF
    The signal-to-noise ratio performance of the Hadamard imaging technique is analyzed and an experimental evaluation of a laboratory Hadamard imager is presented. A comparison between the performances of Hadamard and conventional imaging techniques shows that the Hadamard technique is superior only when the imaging objective lens is required to have an effective F (focus) number of about 2 or slower

    Spectrometer integrated with a facsimile camera

    Get PDF
    This invention integrates a spectrometer capability with the basic imagery function of facsimile cameras without significantly increasing mechanical or optical complexity, or interfering with the imaging function. The invention consists of a group of photodetectors arranged in a linear array in the focal plane of the facsimile camera with a separate narrow band interference filter centered over each photodetector. The interference filter photodetector array is on a line in the focal plane of the facsimile camera along the direction of image motion due to the rotation of the facsimile camera's vertical mirror. As the image of the picture element of interest travels down the interference filter photodetector array, the photodetector outputs are synchronously selected and sampled to provide spectral information on the single picture element

    An analysis of the facsimile-camera response to radiant point sources

    Get PDF
    In addition to imaging the surrounding terrain, planetary lander cameras may also be used to survey the stars to aid in locating the lander site. The response of the facsimile camera, which was selected for the Viking lander missions to Mars, to a radiant point source is formulated and shown to result in a statistical rather than deterministic signal. The signal statistics are derived and magnitudes are evaluated for the brighter visual and red stars. The probability of detecting the resultant statistical signals in photosensor and preamplifier noise and the associated probability of false alarms are also determined

    Design and evaluation of controls for drift, video gain, and color balance in spaceborne facsimile cameras

    Get PDF
    The facsimile camera is an optical-mechanical scanning device which has become an attractive candidate as an imaging system for planetary landers and rovers. This paper presents electronic techniques which permit the acquisition and reconstruction of high quality images with this device, even under varying lighting conditions. These techniques include a control for low frequency noise and drift, an automatic gain control, a pulse-duration light modulation scheme, and a relative spectral gain control. Taken together, these techniques allow the reconstruction of radiometrically accurate and properly balanced color images from facsimile camera video data. These techniques have been incorporated into a facsimile camera and reproduction system, and experimental results are presented for each technique and for the complete system

    Terrain-Moisture Classification Using GPS Surface-Reflected Signals

    Get PDF
    In this study we present a novel method of land surface classification using surface-reflected GPS signals in combination with digital imagery. Two GPS-derived classification features are merged with visible image data to create terrain-moisture (TM) classes, defined here as visibly identifiable terrain or landcover classes containing a surface/soil moisture component. As compared to using surface imagery alone, classification accuracy is significantly improved for a number of visible classes when adding the GPS-based signal features. Since the strength of the reflected GPS signal is proportional to the amount of moisture in the surface, use of these GPS features provides information about the surface that is not obtainable using visible wavelengths alone. Application areas include hydrology, precision agriculture, and wetlands mapping

    Utilizing Calibrated GPS Reflected Signals to Estimate Soil Reflectivity and Dielectric Constant: Results from SMEX02

    Get PDF
    Extensive reflected GPS data was collected using a GPS reflectometer installed on an HC130 aircraft during the Soil Moisture Experiment 2002 (SMEX02) near Ames, Iowa. At the same time, widespread surface truth data was acquired in the form of point soil moisture profiles, areal sampling of near-surface soil moisture, total green biomass and precipitation history, among others. Previously, there have been no reported efforts to calibrate reflected GPS data sets acquired over land. This paper reports the results of two approaches to calibration of the data that yield consistent results. It is shown that estimating the strength of the reflected signals by either (1) assuming an approximately specular surface reflection or (2) inferring the surface slope probability density and associated normalization constants give essentially the same results for the conditions encountered in SMEX02. The corrected data is converted to surface reflectivity and then to dielectric constant as a test of the calibration approaches. Utilizing the extensive in-situ soil moisture related data this paper also presents the results of comparing the GPS-inferred relative dielectric constant with the Wang-Schmugge model frequently used to relate volume moisture content to dielectric constant. It is shown that the calibrated GPS reflectivity estimates follow the expected dependence of permittivity with volume moisture, but with the following qualification: The soil moisture value governing the reflectivity appears to come from only the top 1-2 centimeters of soil, a result consistent with results found for other microwave techniques operating at L-band. Nevertheless, the experimentally derived dielectric constant is generally lower than predicted. Possible explanations are presented to explain this result
    corecore