181 research outputs found

    First-principles study on scanning tunneling microscopy images of hydrogen-terminated Si(110) surfaces

    Full text link
    Scanning tunneling microscopy images of hydrogen-terminated Si(110) surfaces are studied using first-principles calculations. Our results show that the calculated filled-state images and local density of states are consistent with recent experimental results, and the empty-state images appear significantly different from the filled-state ones. To elucidate the origin of this difference, we examined in detail the local density of states, which affects the images, and found that the bonding and antibonding states of surface silicon atoms largely affect the difference between the filled- and empty-state images.Comment: 4 pages, and 4 figure

    Fluid flow and interlinked feedback loops establish left-right asymmetric decay of Cerl2 mRNA

    Get PDF
    Breaking of left-right symmetry in mouse embryos requires fluid flow at the node, but the precise action of the flow has remained unknown. Here we show that the left-right asymmetry of Cerl2 expression around the node, a target of the flow, is determined post-transcriptionally by decay of Cerl2 mRNA in a manner dependent on its 3' untranslated region. Cerl2 mRNA is absent specifically from the apical region of crown cells on the left side of the node. Preferential decay of Cerl2 mRNA on the left is initiated by the leftward flow and further enhanced by the operation of Wnt-Cerl2 interlinked feedback loops, in which Wnt3 upregulates Wnt3 expression and promotes Cerl2 mRNA decay, whereas Cerl2 promotes Wnt degradation. Mathematical modelling and experimental data suggest that these feedback loops behave as a bistable switch that can amplify in a noise-resistant manner a small bias conferred by fluid flow.Ministry of Education, Culture, Sports, Science, and Technology of Japan; Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Corporation (JST); GCOE of Osaka University; FCTinfo:eu-repo/semantics/publishedVersio

    Altered Macrophage Function Contributes to Colitis in Mice Defective in the Phosphoinositide-3 Kinase Subunit p110δ

    Get PDF
    Innate immune responses are crucial for host defense against pathogens, but need to be tightly regulated to prevent chronic inflammation. Initial characterization of mice with a targeted inactivating mutation in the p110d subunit of phosphoinositide 3-kinase (PI3K p110δD910A/D910A) reveal defects in B- and T-cell signaling and chronic colitis. Here, we further characterize features of inflammatory bowel diseases (IBD) in these mice and investigate underlying innate immune defects

    Characterization of the Modes of Binding between Human Sweet Taste Receptor and Low-Molecular-Weight Sweet Compounds

    Get PDF
    One of the most distinctive features of human sweet taste perception is its broad tuning to chemically diverse compounds ranging from low-molecular-weight sweeteners to sweet-tasting proteins. Many reports suggest that the human sweet taste receptor (hT1R2–hT1R3), a heteromeric complex composed of T1R2 and T1R3 subunits belonging to the class C G protein–coupled receptor family, has multiple binding sites for these sweeteners. However, it remains unclear how the same receptor recognizes such diverse structures. Here we aim to characterize the modes of binding between hT1R2–hT1R3 and low-molecular-weight sweet compounds by functional analysis of a series of site-directed mutants and by molecular modeling–based docking simulation at the binding pocket formed on the large extracellular amino-terminal domain (ATD) of hT1R2. We successfully determined the amino acid residues responsible for binding to sweeteners in the cleft of hT1R2 ATD. Our results suggest that individual ligands have sets of specific residues for binding in correspondence with the chemical structures and other residues responsible for interacting with multiple ligands

    Photoperiod Regulates Corticosterone Rhythms by Altered Adrenal Sensitivity via Melatonin-Independent Mechanisms in Fischer 344 Rats and C57BL/6J Mice

    Get PDF
    Most species living in temperate zones adapt their physiology and behavior to seasonal changes in the environment by using the photoperiod as a primary cue. The mechanisms underlying photoperiodic regulation of stress-related functions are not well understood. In this study, we analyzed the effects of photoperiod on the hypothalamic-pituitary-adrenal axis in photoperiod-sensitive Fischer 344 rats. We first examined how photoperiod affects diurnal variations in plasma concentrations of adrenocorticotropic hormone (ACTH) and corticosterone. ACTH levels did not exhibit diurnal variations under long- and short-day conditions. On the other hand, corticosterone levels exhibited a clear rhythm under short-day condition with a peak during dark phase. This peak was not observed under long-day condition in which a significant rhythm was not detected. To analyze the mechanisms responsible for the photoperiodic regulation of corticosterone rhythms, ACTH was intraperitoneally injected at the onset of the light or dark phase in dexamethasone-treated rats maintained under long- and short-day conditions. ACTH induced higher corticosterone levels in rats examined at dark onset under short-day condition than those maintained under long-day condition. Next, we asked whether melatonin signals are involved in photoperiodic regulation of corticosterone rhythms, and rats were intraperitoneally injected with melatonin at late afternoon under long-day condition for 3 weeks. However, melatonin injections did not affect the corticosterone rhythms. In addition, photoperiodic changes in the amplitude of corticosterone rhythms were also observed in melatonin-deficient C57BL/6J mice, in which expression profiles of several clock genes and steroidgenesis genes in adrenal gland were modified by the photoperiod. Our data suggest that photoperiod regulates corticosterone rhythms by altered adrenal sensitivity through melatonin-independent mechanisms that may involve the adrenal clock

    Effect of Peripheral 5-HT on Glucose and Lipid Metabolism in Wether Sheep

    Get PDF
    In mice, peripheral 5-HT induces an increase in the plasma concentrations of glucose, insulin and bile acids, and a decrease in plasma triglyceride, NEFA and cholesterol concentrations. However, given the unique characteristics of the metabolism of ruminants relative to monogastric animals, the physiological role of peripheral 5-HT on glucose and lipid metabolism in sheep remains to be established. Therefore, in this study, we investigated the effect of 5-HT on the circulating concentrations of metabolites and insulin using five 5-HT receptor (5HTR) antagonists in sheep. After fasting for 24 h, sheep were intravenously injected with 5-HT, following which-, plasma glucose, insulin, triglyceride and NEFA concentrations were significantly elevated. In contrast, 5-HT did not affect the plasma cholesterol concentration, and it induced a decrease in bile acid concentrations. Increases in plasma glucose and insulin concentrations induced by 5-HT were attenuated by pre-treatment with Methysergide, a 5HTR 1, 2 and 7 antagonist. Additionally, decreased plasma bile acid concentrations induced by 5-HT were blocked by pre-treatment with Ketanserin, a 5HTR 2A antagonist. However, none of the 5HTR antagonists inhibited the increase in plasma triglyceride and NEFA levels induced by 5-HT. On the other hand, mRNA expressions of 5HTR1D and 1E were observed in the liver, pancreas and skeletal muscle. These results suggest that there are a number of differences in the physiological functions of peripheral 5-HT with respect to lipid metabolism between mice and sheep, though its effect on glucose metabolism appears to be similar between these species

    A20 (TNFAIP3) Deletion in Epstein-Barr Virus-Associated Lymphoproliferative Disorders/Lymphomas

    Get PDF
    A negative regulator of the nuclear factor (NF)-kappa B pathway, A20 (TNFAIP3), is inactivated in several types of lymphomas; particularly in diffuse large B-cell lymphoma (DLBCL), classical Hodgkin's lymphoma, and extranodal marginal zone lymphoma of the mucosa-associated lymphoid tissue. These findings suggest that the NF-kappa B activation is related to A20 inactivation. Recently, A20 inactivation has also been observed in Epstein-Barr virus (EBV)-related lymphomas; however, this occurrence has not been well investigated. Moreover, NF-kappa B is a key molecule in activated B-cell-like (ABC)-type DLBCL; EBV-associated DLBCL is of the ABC type. Therefore, we focused on A20 deletions in EBV-associated lymphoproliferative disorders/lymphomas. Using fluorescent in situ hybridization analysis, A20 deletions were identified in 4 of 13 samples from patients with pyothorax-associated lymphoma (PAL) (31%), 3 of 20 samples from nasal-type NK/T cell lymphomas (NKTLs) (15%), 1 of 8 samples of EBV-positive DLBCL of the elderly (DLBCL-e) (13%), but not in any of the 11 samples from individuals with methotrexate-related lymphoproliferative disorder (MTX-LPD) (0%). Among the samples with A20 deletions, EBV latent membrane protein 1 (LMP-1) expression was detected in all 4 of the PAL samples with A20 deletions and in the DLBCL-e sample with an A20 deletion, but not in any of the 3 NKTL samples. This finding indicated that A20 deletions were not directly related to the EBV latency pattern of lymphomas, although such deletions might be related to the diagnostic category. Immunohistologically, the A20 protein was absent in 2 (15%) of the13 PAL samples, 1 (9%) of 11 MTX-LPD samples, and in none of the 20 NKTL (0%) or 8 DLBCL-e samples. In conclusion, A20 deletion and/or dysfunctional expression are frequently associated with PALs, and A20 abnormalities may be related to the pathogenesis of PAL
    • …
    corecore