7 research outputs found

    Intraperitoneal Paclitaxel Treatment for Patients with Pancreatic Ductal Adenocarcinoma with Peritoneal Dissemination Provides a Survival Benefit

    No full text
    Background: Intraperitoneal chemotherapy using paclitaxel (i.p.-PTX) is expected to be a new therapeutic strategy for patients with pancreatic ductal adenocarcinoma (PDAC) and peritoneal dissemination. We evaluated the survival benefit of i.p.-PTX compared with standard systemic chemotherapy. Methods: Clinical data of 101 consecutive PDAC patients with peritoneal dissemination between 2007 and 2018 were analyzed. All patients were determined to have no other sites of distant organ metastasis to the lung, bone, or liver on contrast-enhanced CT imaging. Patients underwent staging laparoscopy or open laparotomy to confirm pathological evidence of peritoneal dissemination, and to exclude occult liver metastasis. Survival curves were estimated using the Kaplan–Meier method, and differences were compared using the log-rank test. Results: Forty-three patients were treated with i.p.-PTX (i.p.-PTX group) and forty-nine patients received standard systemic chemotherapy (Ctrl group). Nine patients did not receive any treatment (BSC group). The median survival time (MST) in the i.p.-PTX group was significantly longer than that in the Ctrl group (17.9 months vs. 10.2 months, p = 0.006). Negative peritoneal washing cytology was observed in 24 out of 43 patients in the i.p.-PTX group. The i.p.-PTX group tended to have a higher proportion of clinical responses than the Ctrl group (30% vs. 18%, p = 0.183). Conversion surgery was performed in 10 patients in the i.p.-PTX group and 2 patients in the Ctrl group after confirming disappearance of peritoneal dissemination with staging laparoscopy or open laparotomy (p = 0.005). The MST in patients who underwent surgical resection was significantly longer than that in patients who did not (27.4 months vs. 11.3 months; p < 0.0001). Conclusion: i.p.-PTX therapy provided improved survival in PDAC patients with peritoneal dissemination, and conversion surgery enhanced it in patients with favorable responses to chemotherapy. i.p.-PTX might become one of the treatment options to PDAC patients with peritoneal dissemination

    Dual therapy for third-line Helicobacter pylori eradication and urea breath test prediction

    No full text
    We evaluated the efficacy and tolerability of a dual therapy with rabeprazole and amoxicillin (AMX) as an empiric third-line rescue therapy. In patients with failure of first-line treatment with a proton pump inhibitor (PPI)-AMX-clarithromycin regimen and second-line treatment with the PPI-AMX-metronidazole regimen, a third-line eradication regimen with rabeprazole (10 mg q.i.d.) and AMX (500 mg q.i.d.) was prescribed for 2 wk. Eradication was confirmed by the results of the 13C-urea breath test (UBT) at 12 wk after the therapy. A total of 46 patients were included; however, two were lost to follow-up. The eradication rates as determined by per-protocol and intention-to-treat analyses were 65.9% and 63.0%, respectively. The pretreatment UBT results in the subjects showing eradication failure; those patients showing successful eradication comprised 32.9 ± 28.8 permil and 14.8 ± 12.8 permil, respectively. The pretreatment UBT results in the subjects with eradication failure were significantly higher than those in the patients with successful eradication (P = 0.019). A low pretreatment UBT result (≤ 28.5 permil) predicted the success of the eradication therapy with a positive predictive value of 81.3% and a sensitivity of 89.7%. Adverse effects were reported in 18.2% of the patients, mainly diarrhea and stomatitis. Dual therapy with rabeprazole and AMX appears to serve as a potential empirical third-line strategy for patients with low values on pretreatment UBT

    POGLUT1, the putative effector gene driven by rs2293370 in primary biliary cholangitis susceptibility locus chromosome 3q13.33

    Get PDF
    Primary biliary cholangitis (PBC) is a chronic and cholestatic autoimmune liver disease caused by the destruction of intrahepatic small bile ducts. Our previous genome-wide association study (GWAS) identified six susceptibility loci for PBC. Here, in order to further elucidate the genetic architecture of PBC, a GWAS was performed on an additional independent sample set, then a genome-wide meta-analysis with our previous GWAS was performed based on a whole-genome single nucleotide polymorphism (SNP) imputation analysis of a total of 4, 045 Japanese individuals (2, 060 cases and 1, 985 healthy controls). A susceptibility locus on chromosome 3q13.33 (including ARHGAP31, TMEM39A, POGLUT1, TIMMDC1, and CD80) was previously identified both in the European and Chinese populations and was replicated in the Japanese population (OR = 0.7241, P = 3.5 × 10⁻⁹). Subsequent in silico and in vitro functional analyses identified rs2293370, previously reported as the top-hit SNP in this locus in the European population, as the primary functional SNP. Moreover, e-QTL analysis indicated that the effector gene of rs2293370 was Protein O-Glucosyltransferase 1 (POGLUT1) (P = 3.4 × 10⁻⁸). This is the first study to demonstrate that POGLUT1 and not CD80 is the effector gene regulated by the primary functional SNP rs2293370, and that increased expression of POGLUT1 might be involved in the pathogenesis of PBC

    X Chromosome Contribution to the Genetic Architecture of Primary Biliary Cholangitis.

    Get PDF
    BACKGROUND & AIMS: Genome-wide association studies in primary biliary cholangitis (PBC) have failed to find X chromosome (chrX) variants associated with the disease. Here, we specifically explore the chrX contribution to PBC, a sexually dimorphic complex autoimmune disease. METHODS: We performed a chrX-wide association study, including genotype data from 5 genome-wide association studies (from Italy, United Kingdom, Canada, China, and Japan; 5244 case patients and 11,875 control individuals). RESULTS: Single-marker association analyses found approximately 100 loci displaying P < 5 × 10(-4), with the most significant being a signal within the OTUD5 gene (rs3027490; P = 4.80 × 10(-6); odds ratio [OR], 1.39; 95% confidence interval [CI], 1.028-1.88; Japanese cohort). Although the transethnic meta-analysis evidenced only a suggestive signal (rs2239452, mapping within the PIM2 gene; OR, 1.17; 95% CI, 1.09-1.26; P = 9.93 × 10(-8)), the population-specific meta-analysis showed a genome-wide significant locus in East Asian individuals pointing to the same region (rs7059064, mapping within the GRIPAP1 gene; P = 6.2 × 10(-9); OR, 1.33; 95% CI, 1.21-1.46). Indeed, rs7059064 tags a unique linkage disequilibrium block including 7 genes: TIMM17B, PQBP1, PIM2, SLC35A2, OTUD5, KCND1, and GRIPAP1, as well as a superenhancer (GH0XJ048933 within OTUD5) targeting all these genes. GH0XJ048933 is also predicted to target FOXP3, the main T-regulatory cell lineage specification factor. Consistently, OTUD5 and FOXP3 RNA levels were up-regulated in PBC case patients (1.75- and 1.64-fold, respectively). CONCLUSIONS: This work represents the first comprehensive study, to our knowledge, of the chrX contribution to the genetics of an autoimmune liver disease and shows a novel PBC-related genome-wide significant locus.The article is available via Open Access. Click on the 'Additional link' above to access the full-text.Published version, accepted versio
    corecore