64 research outputs found

    Syn-metamorphic B-bearing fluid infiltrations deduced from tourmaline in the Main Central Thrust zone, Eastern Nepal Himalayas

    Get PDF
    Mode of occurrence and chemical composition of tourmaline in pelitic schists from the Main Central Thrust (MCT) zone of the Lesser Himalayan Sequences (LHS) are described in detail with the aim of deducing the chemical characteristics of tourmaline formed through B-bearing fluid infiltration and of estimating the composition of the syn-metamorphic fluids. Metasomatic tourmalines from the tourmalinized wall rocks show significant increases in XCa [=Ca/(Ca + Na)] at almost constant XMg [=Mg/(Mg + Fe²⁺)] from the cores or mantles to the rims. Tourmaline in tourmaline-rich (> 1.0 vol%) pelitic schists from the biotite zone to the kyanite zone also show marked increase in XCa at almost constant XMg, and are interpreted as a product of B-bearing fluid infiltration. Abundant margarite and anorthite formed in the pelitic schists intercalated with the metadolostone layers suggesting that the B-rich fluid became Ca enriched as it interacted with metadolostone layers, and metasomatically introduced Ca into the pelitic schists. Infiltration of such B- and Ca-rich fluids into pelitic schists likely resulted in production of abundant tourmaline with the compositional trend of increasing XCa at almost constant XMg. Most of the tourmaline in tourmaline-rich pelitic schists are in equilibrium with plagioclase, suggesting that the fluid composition was buffered by the pelitic schists. Composition of tourmaline in the pelitic schists with <1 vol% tourmaline mostly show increase in XCa and wider range of XMg values, reflecting its growth during prograde metamorphism. The composition of fluids that coexisted with tourmaline is estimated by applying experimentally-determined fluid/tourmaline chemical relationships to the composition of tourmaline from veins associated with tourmalinization, pelitic schists with <1 vol% tourmaline and tourmaline-rich pelitic schists. Assuming coexisting anion to be Cl, the salinity estimated for these rock types was ~0.44–0.59 mol/l NaCl + CaCl₂ that is similar to or slightly lower than the present-day seawater. Veins associated with tourmalinization and tourmaline-rich pelitic schists are sporadically distributed in the MCT zone of the LHS, suggesting that the syn-metamorphic, B-bearing saline fluid infiltrations took place widely in the MCT zone, and the fluid pathways were localized and channeled. Our observation supports the scenario whereby infiltration of fluid into the High Himalayan Crystallines (HHC) caused vapor-saturated partial melting of the HHC to give tourmaline leucogranite melts contemporaneous with inverted metamorphism in the MCT zone

    Restoration of E-cadherin expression by selective Cox-2 inhibition and the clinical relevance of the epithelial-to-mesenchymal transition in head and neck squamous cell carcinoma

    Get PDF
    BACKGROUND: The epithelial-to-mesenchymal transition (EMT) accompanied by the downregulation of E-cadherin has been thought to promote metastasis. Cyclooxygenase-2 (Cox-2) is presumed to contribute to cancer progression through its multifaceted function, and recently its inverse relationship with E-cadherin was suggested. The aim of the present study was to investigate whether selective Cox-2 inhibitors restore the expression of E-cadherin in head and neck squamous cell carcinoma (HNSCC) cells, and to examine the possible correlations of the expression levels of EMT-related molecules with clinicopathological factors in HNSCC. METHODS: We used quantitative real-time PCR to examine the effects of three selective Cox-2 inhibitors, i.e., celecoxib, NS-398, and SC-791 on the gene expressions of E-cadherin (CDH-1) and its transcriptional repressors (SIP1, Snail, Twist) in the human HNSCC cell lines HSC-2 and HSC-4. To evaluate the changes in E-cadherin expression on the cell surface, we used a flowcytometer and immunofluorescent staining in addition to Western blotting. We evaluated and statistically analyzed the clinicopathological factors and mRNA expressions of Cox-2, CDH-1 and its repressors in surgical specimens of 40 patients with tongue squamous cell carcinoma (TSCC). RESULTS: The selective Cox-2 inhibitors upregulated the E-cadherin expression on the cell surface of the HNSCC cells through the downregulation of its transcriptional repressors. The extent of this effect depended on the baseline expression levels of both E-cadherin and Cox-2 in each cell line. A univariate analysis showed that higher Cox-2 mRNA expression (p = 0.037), lower CDH-1 mRNA expression (p = 0.020), and advanced T-classification (p = 0.036) were significantly correlated with lymph node metastasis in TSCC. A multivariate logistic regression revealed that lower CDH-1 mRNA expression was the independent risk factor affecting lymph node metastasis (p = 0.041). CONCLUSIONS: These findings suggest that the appropriately selective administration of certain Cox-2 inhibitors may have an anti-metastatic effect through suppression of the EMT by restoring E-cadherin expression. In addition, the downregulation of CDH-1 resulting from the EMT may be closely involved in lymph node metastasis in TSCC

    Thermodynamic Bethe Ansatz Equations for Minimal Surfaces in AdS_3

    Get PDF
    We study classical open string solutions with a null polygonal boundary in AdS_3 in relation to gluon scattering amplitudes in N=4 super Yang-Mills at strong coupling. We derive in full detail the set of integral equations governing the decagonal and the dodecagonal solutions and identify them with the thermodynamic Bethe ansatz equations of the homogeneous sine-Gordon models. By evaluating the free energy in the conformal limit we compute the central charges, from which we observe general correspondence between the polygonal solutions in AdS_n and generalized parafermions.Comment: 25 pages, 4 figures, v2: a figure and references added, minor corrections, v3: references added, minor corrections, to appear in JHE

    Hepatic ISG expression is associated with genetic variation in interleukin 28B and the outcome of IFN therapy for chronic hepatitis C

    Get PDF
    金沢大学医薬保健研究域医学系Background & Aims: Multiple viral and host factors are related to the treatment response to pegylated-interferon and ribavirin combination therapy; however, the clinical relevance and relationship of these factors have not yet been fully evaluated. Methods: We studied 168 patients with chronic hepatitis C who received pegylated-interferon and ribavirin combination therapy. Gene expression profiles in the livers of 91 patients were analyzed using an Affymetrix genechip (Affymetrix, Santa Clara, CA). The expression of interferon-stimulated genes (ISGs) was evaluated in all samples by real-time polymerase chain reaction. Genetic variation in interleukin 28B (IL28B; rs8099917) was determined in 91 patients. Results: Gene expression profiling of the liver differentiated patients into 2 groups: patients with up-regulated ISGs and patients with down-regulated ISGs. A high proportion of patients with no response to treatment was found in the up-regulated ISGs group (P = .002). Multivariate logistic regression analysis showed that ISGs (<3.5) (odds ratio [OR], 16.2; P < .001), fibrosis stage (F1-F2) (OR, 4.18; P = .003), and ISDR mutation (<2) (OR, 5.09; P = .003) were strongly associated with the viral response. The IL28B polymorphism of 91 patients showed that 66% were major homozygotes (TT), 30% were heterozygotes (TG), and 4% were minor homozygotes (GG). Interestingly, hepatic ISGs were associated with the IL28B polymorphism (OR, 18.1; P < .001), and its expression was significantly higher in patients with the minor genotype (TG or GG) than in those with the major genotype (TT). Conclusions: The expression of hepatic ISGs is strongly associated with treatment response and genetic variation of IL28B. The differential role of host and viral factors as predicting factors may also be present. © 2010 AGA Institute

    g-Functions and gluon scattering amplitudes at strong coupling

    Get PDF
    We study gluon scattering amplitudes/Wilson loops in N=4 super Yang-Mills theory at strong coupling by calculating the area of the minimal surfaces in AdS_3 based on the associated thermodynamic Bethe ansatz system. The remainder function of the amplitudes is computed by evaluating the free energy, the T- and Y-functions of the homogeneous sine-Gordon model. Using conformal field theory (CFT) perturbation, we examine the mass corrections to the free energy around the CFT point corresponding to the regular polygonal Wilson loop. Based on the equivalence between the T-functions and the g-functions, which measure the boundary entropy, we calculate corrections to the T- and Y-functions as well as express them at the CFT point by the modular S-matrix. We evaluate the remainder function around the CFT point for 8 and 10-point amplitudes explicitly and compare these analytic expressions with the 2-loop formulas. The two rescaled remainder functions show very similar power series structures.Comment: 51 pages, 4 figures, v2: some comments and references added, based on the published version, v3: minor change
    corecore