76 research outputs found

    Role of liraglutide in Alzheimer's disease pathology

    Get PDF
    Background The described relationship between Alzheimer's disease (AD) and type 2 diabetes (T2D) and the fact that AD has no succesful treatment has led to the study of antidiabetic drugs that may limit or slow down AD pathology. Main body Although T2D treatment has evident limitations, options are increasing including glucagon-like peptide 1 analogs. Among these, liraglutide (LRGT) is commonly used by T2D patients to improve beta cell function and suppress glucagon to restore normoglycaemia. Interestingly, LRGT also counterbalances altered brain metabolism and has anti-inflammatory properties. Previous studies have reported its capacity to reduce AD pathology, including amyloid production and deposition, tau hyperphosphorylation, or neuronal and synaptic loss in animal models of AD, accompanied by cognitive improvement. Given the beneficial effects of LRGT at central level, studies in patients have been carried out, showing modest beneficial effects. At present, the ELAD trial (Evaluating Liraglutide in Alzheimer's Disease NCT01843075) is an ongoing phase IIb study in patients with mild AD. In this minireview, we resume the outcomes of LRGT treatment in preclinical models of AD as well as the available results in patients up to date. Conclusion The effects of LRGT on animal models show significant benefits in AD pathology and cognitive impairment. While studies in patients are limited, ongoing clinical trials will probably provide more definitive conclusions on the role of LRGT in AD patients

    DNA-Sequence Variation Among Schistosoma mekongi Populations and Related Taxa; Phylogeography and the Current Distribution of Asian Schistosomiasis

    Get PDF
    Schistosomiasis is a disease caused by parasitic worms of the genus Schistosoma. In the lower Mekong river, schistosomiasis in humans is called Mekong schistosomiasis and is caused by Schistosoma mekongi. In the past, Mekong schistosomiasis was known only from the lower Mekong river. Here DNA-sequence variation is used to study the relationships and history of populations of S. mekongi. Populations from other rivers are compared and shown to be S. mekongi, thus confirming that this species is not restricted to only a small section of one river. The dates of divergence among populations are also estimated. Prior to this study it was assumed that S. mekongi originated in Yunnan, China, migrated southwards across Laos and into Cambodia, later becoming extinct in Laos (due to conditions unsuitable for transmission). In contrast, the dates estimated here indicate that S. mekongi entered Cambodia from Vietnam, 2.5–1 Ma. The pattern of genetic variation fits better with a more recent, and ongoing, northwards migration from Cambodia into Laos. The implications are that Mekong schistosomiasis is more widespread than once thought and that the human population at risk is up to 10 times greater than originally estimated. There is also an increased possibility of the spread of Mekong schistosomiasis across Laos

    Sunstone Plagioclase Feldspar from Ethiopia

    No full text
    Ethiopia, traditionally known for opal, has become an important source for emerald and sapphire. After these significant discoveries, a new type of Cu-bearing sunstone feldspar, first shown in 2015 to Tewodros Sintayehu (Orbit Ethiopia Plc.), was discovered in the Afar region (L. Kiefert et al., “Sunstone labradorite-bytownite from Ethiopia,” Journal of Gemmology, Vol. 36, No. 8, 2019, pp. 694–695). This material made its way to the jewelry market last year in Tucson. To fully characterize this new production, GIA obtained 48 Ethiopian sunstones for scientific examination. Among them, 44 rough stones (figure 1, left) were borrowed from Stephen Challener (Angry Turtle Jewelry), who acquired them from an Ethiopian gem dealer in Tucson in February 2019. Another four rough stones (figure 1, right) were purchased by author YK from Amde Zewdalem (Ethiopian Opal and Minerals) and Benyam Mengistu, who facilitates mining and exporting samples from Ethiopia, at the Tokyo International Mineral Association show in June 2019. Prior to this discovery, the only verified occurrences of Cu-bearing feldspar were from Lake and Harney Counties in Oregon (e.g., the Dust Devil and Ponderosa mines). However, more than a decade ago there was a controversy about Cu-bearing feldspar on the market purportedly from Asia or Africa with an undetermined color origin, presumably Cu-diffused (G.R. Rossman, “The Chinese red feldspar controversy: Chronology of research through July 2009,” Spring 2011 G&G, pp. 16–30; A. Abduriyim et al., “Research on gem feldspar from the Shigatse region of Tibet,” Summer 2011 G&G, pp. 167–180). Gemological testing and advanced analytical methods helped distinguish this new Ethiopian material from the Oregon material and the controversial feldspar of questionable color origin mentioned above in order to ensure GIA’s accurate reporting of the natural origin of Cu-bearing feldspar
    corecore