34 research outputs found

    Pilot KaVA monitoring on the M87 jet: confirming the inner jet structure and superluminal motions at sub-pc scales

    Full text link
    We report the initial results of our high-cadence monitoring program on the radio jet in the active galaxy M87, obtained by the KVN and VERA Array (KaVA) at 22 GHz. This is a pilot study that preceded a larger KaVA-M87 monitoring program, which is currently ongoing. The pilot monitoring was mostly performed every two to three weeks from December 2013 to June 2014, at a recording rate of 1 Gbps, obtaining the data for a total of 10 epochs. We successfully obtained a sequence of good quality radio maps that revealed the rich structure of this jet from <~1 mas to 20 mas, corresponding to physical scales (projected) of ~0.1-2 pc (or ~140-2800 Schwarzschild radii). We detected superluminal motions at these scales, together with a trend of gradual acceleration. The first evidence for such fast motions and acceleration near the jet base were obtained from recent VLBA studies at 43 GHz, and the fact that very similar kinematics are seen at a different frequency and time with a different instrument suggests these properties are fundamental characteristics of this jet. This pilot program demonstrates that KaVA is a powerful VLBI array for studying the detailed structural evolution of the M87 jet and also other relativistic jets.Comment: 10 pages, 9 figures, accepted for publication in PAS

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Wavelet-based coherent vorticity sheet and current sheet extraction from three-dimensional homogeneous magnetohydrodynamic turbulence

    Get PDF
    International audienceA method for extracting coherent vorticity sheets and current sheets out of three-dimensional homogeneous magnetohydrodynamic (MHD) turbulence is proposed, which is based on the orthogonal wavelet decomposition of the vorticity and current density fields. Thresholding the wavelet coefficients allows both fields to be split into coherent and incoherent parts. The fields to be analyzed are obtained by direct numerical simulation (DNS) of forced incompressible MHD turbulence without mean magnetic field, using a classical Fourier spectral method at a resolution of 5123. Coherent vorticity sheets and current sheets are extracted from the DNS data at a given time instant. It is found that the coherent vorticity and current density preserve both the vorticity sheets and the current sheets present in the total fields while retaining only a few percent of the degrees of freedom. The incoherent vorticity and current density are shown to be structureless and of mainly dissipative nature. The spectral distributions of kinetic and magnetic energies of the coherent fields only differ in the dissipative range, while the corresponding incoherent fields exhibit near-equipartition of energy. The probability distribution functions of total and coherent fields for both vorticity and current density coincide almost perfectly, while the incoherent fields have strongly reduced variances. Studying the energy flux confirms that the nonlinear dynamics is fully captured by the coherent fields only
    corecore