281 research outputs found

    Dynamic nuclear polarization induced by breakdown of fractional quantum Hall effect

    Full text link
    We study dynamic nuclear polarization (DNP) induced by breakdown of the fractional quantum Hall (FQH) effect. We find that voltage-current characteristics depend on current sweep rates at the quantum Hall states of Landau level filling factors ν\nu = 1, 2/3, and 1/3. The sweep rate dependence is attributed to DNP occurring in the breakdown regime of FQH states. Results of a pump and probe experiment show that the polarities of the DNP induced in the breakdown regimes of the FQH states is opposite to that of the DNP induced in the breakdown regimes of odd-integer quantum Hall states.Comment: 4 pages, 4 figure

    Electrical coherent control of nuclear spins in a breakdown regime of quantum Hall effect

    Full text link
    Using a conventional Hall-bar geometry with a micro-metal strip on top of the surface, we demonstrate an electrical coherent control of nuclear spins in an AlGaAs/GaAs semiconductor heterostructure. A breakdown of integer quantum Hall (QH) effect is utilized to dynamically polarize nuclear spins. By applying a pulse rf magnetic field with the metal strip, the quantum state of the nuclear spins shows Rabi oscillations, which is detected by measuring longitudinal voltage of the QH conductor.Comment: 3 pages, 4 figure

    Evidence for a quantum-spin-Hall phase in graphene decorated with Bi_2Te_3 nanoparticles

    Get PDF
    Realization of the quantum spin Hall effect in graphene devices has remained an outstanding challenge dating back to the inception of the field of topological insulators. Graphene’s exceptionally weak spin-orbit coupling—stemming from carbon’s low mass—poses the primary obstacle. We experimentally and theoretically study artificially enhanced spin-orbit coupling in graphene via random decoration with dilute Bi_2Te_3 nanoparticles. Multiterminal resistance measurements suggest the presence of helical edge states characteristic of a quantum spin Hall phase; the magnetic field and temperature dependence of the resistance peaks, x-ray photoelectron spectra, scanning tunneling spectroscopy, and first-principles calculations further support this scenario. These observations highlight a pathway to spintronics and quantum information applications in graphene-based quantum spin Hall platforms

    Evidence for a quantum-spin-Hall phase in graphene decorated with Bi2Te3 nanoparticles

    Full text link
    Realization of the quantum-spin-Hall effect in graphene devices has remained an outstanding challenge dating back to the inception of the field of topological insulators. Graphene's exceptionally weak spin-orbit coupling -stemming from carbon's low mass- poses the primary obstacle. We experimentally and theoretically study artificially enhanced spin-orbit coupling in graphene via random decoration with dilute Bi2Te3 nanoparticles. Remarkably, multi-terminal resistance measurements suggest the presence of helical edge states characteristic of a quantum-spin-Hall phase; the magnetic-field and temperature dependence of the resistance peaks, X-ray photoelectron spectra, scanning tunneling spectroscopy, and first-principles calculations further support this scenario. These observations highlight a pathway to spintronics and quantum-information applications in graphene-based quantum-spin-Hall platforms

    Infrared magneto-optical properties of (III,Mn)V ferromagetic semiconductors

    Full text link
    We present a theoretical study of the infrared magneto-optical properties of ferromagnetic (III,Mn)V semiconductors. Our analysis combines the kinetic exchange model for (III,Mn)V ferromagnetism with Kubo linear response theory and Born approximation estimates for the effect of disorder on the valence band quasiparticles. We predict a prominent feature in the ac-Hall conductivity at a frequency that varies over the range from 200 to 400 meV, depending on Mn and carrier densities, and is associated with transitions between heavy-hole and light-hole bands. In its zero frequency limit, our Hall conductivity reduces to the k\vec k-space Berry's phase value predicted by a recent theory of the anomalous Hall effect that is able to account quantitatively for experiment. We compute theoretical estimates for magnetic circular dichroism, Faraday rotation, and Kerr effect parameters as a function of Mn concentration and free carrier density. The mid-infrared response feature is present in each of these magneto-optical effects.Comment: 11 pages, 5 figure

    Non-Drude Optical Conductivity of (III,Mn)V Ferromagnetic Semiconductors

    Full text link
    We present a numerical model study of the zero-temperature infrared optical properties of (III,Mn)V diluted magnetic semiconductors. Our calculations demonstrate the importance of treating disorder and interaction effects simultaneously in modelling these materials. We find that the conductivity has no clear Drude peak, that it has a broadened inter-band peak near 220 meV, and that oscillator weight is shifted to higher frequencies by stronger disorder. These results are in good qualitative agreement with recent thin film absorption measurements. We use our numerical findings to discuss the use of f-sum rules evaluated by integrating optical absorption data for accurate carrier-density estimates.Comment: 7 pages, 3 figure

    Magnetotransport properties of (Ga,Mn)As investigated at low temperature and high magnetic field

    Full text link
    Magnetotransport properties of ferromagnetic semiconductor (Ga,Mn)As have been investigated. Measurements at low temperature (50 mK) and high magnetic field (<= 27 T) have been employed in order to determine the hole concentration p = 3.5x10^20 cm ^-3 of a metallic (Ga0.947Mn0.053)As layer. The analysis of the temperature and magnetic field dependencies of the resistivity in the paramagnetic region was performed with the use of the above value of p, which gave the magnitude of p-d exchange energy |N0beta | ~ 1.5 eV.Comment: PDF file, 8 pages, 4 figure
    corecore