15 research outputs found

    Prevention of Radial Oxygen Loss Is Associated With Exodermal Suberin Along Adventitious Roots of Annual Wild Species of Echinochloa

    Get PDF
    Internal aeration is crucial for root growth under waterlogged conditions. Some wetland plants have a structural barrier that impedes oxygen leakage from the basal part of roots called a radial oxygen loss (ROL) barrier. The ROL barrier reduces loss of oxygen transported via the aerenchyma to the root tips, enabling root growth into anoxic soil. The roots of some plants develop an ROL barrier under waterlogged conditions, while they remain leaky to oxygen under well-drained or aerated conditions. The main components of the inducible ROL barrier are thought to be suberin and lignin deposited at the outer cellular space (apoplast) in the outer part of roots. On the other hand, a few wetland plants including a species of Echinochloa form a constitutive ROL barrier, i.e., it is formed even in the absence of waterlogging. However, little is known about the components of constitutive ROL barriers. An ROL barrier is considered to be a characteristic of wetland species because it has not been found in any non-wetland species so far. Here, we examined whether Echinochloa species from non-waterlogged fields also form an inducible or constitutive ROL barrier. We found that three species of Echinochloa from non-waterlogged fields constitutively developed an ROL barrier under aerated conditions. Over 85% of their root exodermis cells were covered with suberin lamellae and had well-developed Casparian strips. These substances inhibited the infiltration of an apoplastic tracer (periodic acid), suggesting that the ROL barrier can also prevent the entry of phytotoxic compounds from the soil. Unlike the other Echinochloa species, E. oryzicola, which mainly inhabits rice paddies, was found to lack a constitutive ROL barrier under aerated conditions. Although close to 90% of its sclerenchyma was well lignified, it leaked oxygen from the basal part of roots. A high percentage (55%) of the root exodermis cells were not fortified with suberin lamellae. These results suggest that suberin is an important component of constitutive ROL barriers

    Imaging the snorkel effect during submerged germination in rice: Oxygen supply via the coleoptile triggers seminal root emergence underwater

    Get PDF
    Submergence during germination impedes aerobic metabolisms and limits the growth of most higher plants. However, some wetland plants including rice can germinate under submerged conditions. It has long been hypothesized that the first elongating shoot tissue, the coleoptile, acts as a snorkel to acquire atmospheric oxygen (O2) to initiate the first leaf elongation and seminal root emergence. Here, we obtained direct evidence for this hypothesis by visualizing the spatiotemporal O2 dynamics during submerged germination in rice using a planar O2 optode system. In parallel with the O2 imaging, we tracked the anatomical development of shoot and root tissues in real-time using an automated flatbed scanner. Three hours after the coleoptile tip reached the water surface, O2 levels around the embryo transiently increased. At this time, the activity of alcohol dehydrogenase (ADH), an enzyme critical for anaerobic metabolism, was significantly reduced, and the coleorhiza covering the seminal roots in the embryo was broken. Approximately 10 h after the transient burst in O2, seminal roots emerged. A transient O2 burst around the embryo was shown to be essential for seminal root emergence during submerged rice germination. The parallel application of a planar O2 optode system and automated scanning system can be a powerful tool for examining how environmental conditions affect germination in rice and other plants

    Separated Transcriptomes of Male Gametophyte and Tapetum in Rice: Validity of a Laser Microdissection (LM) Microarray

    Get PDF
    In flowering plants, the male gametophyte, the pollen, develops in the anther. Complex patterns of gene expression in both the gametophytic and sporophytic tissues of the anther regulate this process. The gene expression profiles of the microspore/pollen and the sporophytic tapetum are of particular interest. In this study, a microarray technique combined with laser microdissection (44K LM-microarray) was developed and used to characterize separately the transcriptomes of the microspore/pollen and tapetum in rice. Expression profiles of 11 known tapetum specific-genes were consistent with previous reports. Based on their spatial and temporal expression patterns, 140 genes which had been previously defined as anther specific were further classified as male gametophyte specific (71 genes, 51%), tapetum-specific (seven genes, 5%) or expressed in both male gametophyte and tapetum (62 genes, 44%). These results indicate that the 44K LM-microarray is a reliable tool to analyze the gene expression profiles of two important cell types in the anther, the microspore/pollen and tapetum

    Comprehensive Network Analysis of Anther-Expressed Genes in Rice by the Combination of 33 Laser Microdissection and 143 Spatiotemporal Microarrays

    Get PDF
    Co-expression networks systematically constructed from large-scale transcriptome data reflect the interactions and functions of genes with similar expression patterns and are a powerful tool for the comprehensive understanding of biological events and mining of novel genes. In Arabidopsis (a model dicot plant), high-resolution co-expression networks have been constructed from very large microarray datasets and these are publicly available as online information resources. However, the available transcriptome data of rice (a model monocot plant) have been limited so far, making it difficult for rice researchers to achieve reliable co-expression analysis. In this study, we performed co-expression network analysis by using combined 44 K agilent microarray datasets of rice, which consisted of 33 laser microdissection (LM)-microarray datasets of anthers, and 143 spatiotemporal transcriptome datasets deposited in RicexPro. The entire data of the rice co-expression network, which was generated from the 176 microarray datasets by the Pearson correlation coefficient (PCC) method with the mutual rank (MR)-based cut-off, contained 24,258 genes and 60,441 genes pairs. Using these datasets, we constructed high-resolution co-expression subnetworks of two specific biological events in the anther, β€œmeiosis” and β€œpollen wall synthesis”. The meiosis network contained many known or putative meiotic genes, including genes related to meiosis initiation and recombination. In the pollen wall synthesis network, several candidate genes involved in the sporopollenin biosynthesis pathway were efficiently identified. Hence, these two subnetworks are important demonstrations of the efficiency of co-expression network analysis in rice. Our co-expression analysis included the separated transcriptomes of pollen and tapetum cells in the anther, which are able to provide precise information on transcriptional regulation during male gametophyte development in rice. The co-expression network data presented here is a useful resource for rice researchers to elucidate important and complex biological events

    A barrier to radial oxygen loss enables wetland plants to grow under waterlogged conditions

    No full text

    Improved waterlogging tolerance of barley (Hordeum vulgare) by pretreatment with ethephon

    No full text
    Root growth into hypoxic or anoxic waterlogged soil relies on internal aeration in plants. The plant hormone ethylene helps adapt to waterlogging by inducing the formation of aerenchyma, which provides a low-resistance pathway for the transport of oxygen from the shoot to the root apex. Waterlogging-susceptible crops including barley start to form aerenchyma after suffering waterlogging stress. But waterlogging can be fatal if aerenchyma formation is not fast enough. Here, we investigated whether pre-treating barley with ethephon, an ethylene-releasing agrochemical, could improve its tolerance to mimicked waterlogging conditions (using stagnant deoxygenated agar nutrient solution). In barley growing in aerated nutrient solution, ethephon treatment enhanced aerenchyma formation at the root tips and induced the development of shorter and shallower roots. Pre-treating barley leaves also delayed waterlogging-caused whiting and increased the percentages of viable root-tips under waterlogging conditions. However, the pretreatment did not noticeably increase fresh weight or shoot length. Further studies are needed to optimize ethephon treatment conditions to improve barley production under waterlogged conditions

    Postmortem diffusion of n-butane and i-butane used for anticontagious plugging spray.

    Get PDF
    θ‘—θ€…ζœ€η΅‚η‰ˆ CC-BY-NC-ND Epub 2015 Aug 21.Blood and tissue samples from a forensic autopsy of a man in his late 60s, who developed dementia and died of multiple head traumas due to a fall from a moving vehicle, contained certain amounts of n-butane and i-butane. The concentration of n-butane was in the range of 0.48-70.5ΞΌL/g, which would be considered as toxic or lethal levels. We had to distinguish whether the cause of his unexplained behavior was due to his pre-existing condition (dementia), or from a confused state induced by butane abuse. No traces of butane use were found at the scene. Police investigation revealed that a propellant used in an anticontagious plugging spray had been administered to him during a postmortem treatment in the emergency hospital. In order to prove the postmortem butane diffusion had resulted from the spray administration and to estimate the diffused concentration, experimental simulation was conducted by using rats. As a result of postmortem treatment with the spray, n-butane at concentrations of 0.54-15.5ΞΌL/mL or g were found in the rat blood and tissues. In this case, we provided further evidence that the postmortem butane diffusion, caused by using the anticontagious plugging spray containing butane gas as a propellant administered to a cadaver during a postmortem procedure prior to forensic autopsy, should be distinguished from cases of actual butane poisoning
    corecore