304 research outputs found

    哺乳類中枢神経系の発生と分化

    Get PDF

    Molecular cloning and expression profile of Xenopus calcineurin A subunit11The nucleotide sequence of XCnA has been deposited in DDBJ/DMBL/GenBank DNA database under the accession number AB037146.

    Get PDF
    AbstractWe have cloned a cDNA encoding a catalytic subunit of calcineurin (CnA) expressed in Xenopus oocytes. The deduced amino acid sequence indicates 96.3% and 96.8% identities with the mouse and human CnAα isoforms, respectively. Xenopus CnA (XCnA) RNA and protein are expressed as maternal and throughout development. Recombinant XCnA protein interacted with calmodulin in the presence of Ca2+. Deletion of calmodulin binding domain and auto-inhibitory domain revealed calcium independent phosphatase activity, thereby showing that XCnA is likely to be modulated by both calmodulin and calcium

    Zic2 and Zic3 synergistically control neurulation and segmentation of paraxial mesoderm in mouse embryo

    Get PDF
    AbstractZic family zinc-finger proteins play various roles in animal development. In mice, five Zic genes (Zic1–5) have been reported. Despite the partly overlapping expression profiles of these genes, mouse mutants for each Zic show distinct phenotypes. To uncover possible redundant roles, we characterized Zic2/Zic3 compound mutant mice. Zic2 and Zic3 are both expressed in presomitic mesoderm, forming and newly generated somites with differential spatiotemporal accentuation. Mice heterozygous for the hypomorphic Zic2 allele together with null Zic3 allele generally showed severe malformations of the axial skeleton, including asymmetric or rostro-caudally bridged vertebrae, and reduction of the number of caudal vertebral bones, that are not obvious in single mutants. These defects were preceded by perturbed somitic marker expression, and reduced paraxial mesoderm progenitors in the primitive streak. These results suggest that Zic2 and Zic3 cooperatively control the segmentation of paraxial mesoderm at multiple stages. In addition to the segmentation abnormality, the compound mutant also showed neural tube defects that ran the entire rostro-caudal extent (craniorachischisis), suggesting that neurulation is another developmental process where Zic2 and Zic3 have redundant functions

    Cell adhesion molecules regulate Ca2+-mediated steering of growth cones via cyclic AMP and ryanodine receptor type 3

    Get PDF
    Axonal growth cones migrate along the correct paths during development, not only directed by guidance cues but also contacted by local environment via cell adhesion molecules (CAMs). Asymmetric Ca2+ elevations in the growth cone cytosol induce both attractive and repulsive turning in response to the guidance cues (Zheng, J.Q. 2000. Nature. 403:89–93; Henley, J.R., K.H. Huang, D. Wang, and M.M. Poo. 2004. Neuron. 44:909–916). Here, we show that CAMs regulate the activity of ryanodine receptor type 3 (RyR3) via cAMP and protein kinase A in dorsal root ganglion neurons. The activated RyR3 mediates Ca2+-induced Ca2+ release (CICR) into the cytosol, leading to attractive turning of the growth cone. In contrast, the growth cone exhibits repulsion when Ca2+ signals are not accompanied by RyR3-mediated CICR. We also propose that the source of Ca2+ influx, rather than its amplitude or the baseline Ca2+ level, is the primary determinant of the turning direction. In this way, axon-guiding and CAM-derived signals are integrated by RyR3, which serves as a key regulator of growth cone navigation

    Basal ryanodine receptor activity suppresses autophagic flux

    Get PDF
    The inositol 1,4,5-trisphosphate receptors (IP3Rs) and intracellular Ca2+ signaling are critically involved in regulating different steps of autophagy, a lysosomal degradation pathway. The ryanodine receptors (RyR), intracellular Ca2+-release channels mainly expressed in excitable cell types including muscle and neurons, have however not yet been extensively studied in relation to autophagy. Yet, aberrant expression and excessive activity of RyRs in these tissues has been implicated in the onset of several diseases including Alzheimer’s disease, where impaired autophagy regulation contributes to the pathology. In this study, we determined whether pharmacological RyR inhibition could modulate autophagic flux in ectopic RyR-expressing models, like HEK293 cells and in cell types that endogenously express RyRs, like C2C12 myoblasts and primary hippocampal neurons. Importantly, RyR3 overexpression in HEK293 cells impaired the autophagic flux. Conversely, in all cell models tested, pharmacological inhibition of endogenous or ectopically expressed RyRs, using dantrolene or ryanodine, augmented autophagic flux by increasing lysosomal turn-over (number of autophagosomes and autolysosomes measured as mCherry-LC3 punctae/cell increased from 70.37 ± 7.81 in control HEK RyR3 cells to 111.18 ± 7.72 and 98.14 ± 7.31 after dantrolene and ryanodine treatments, respectively). Moreover, in differentiated C2C12 cells, transmission electron microscopy demonstrated that dantrolene treatment decreased the number of early autophagic vacuoles from 5.9 ± 2.97 to 1.8 ± 1.03 per cellular cross section. The modulation of the autophagic flux could be linked to the functional inhibition of RyR channels as both RyR inhibitors efficiently diminished the number of cells showing spontaneous RyR3 activity in the HEK293 cell model (from 41.14% ± 2.12 in control cells to 18.70% ± 2.25 and 9.74% ± 2.67 after dantrolene and ryanodine treatments, respectively). In conclusion, basal RyR-mediated Ca2+-release events suppress autophagic flux at the level of the lysosomes

    Auto-Luminescent Genetically-Encoded Ratiometric Indicator for Real-Time Ca2+ Imaging at the Single Cell Level

    Get PDF
    Background: Efficient bioluminescence resonance energy transfer (BRET) from a bioluminescent protein to a fluorescent protein with high fluorescent quantum yield has been utilized to enhance luminescence intensity, allowing single-cell imaging in near real time without external light illumination. Methodology/Principal Findings: We applied BRET to develop an autoluminescent Ca2+ indicator, BRAC, which is composed of Ca^[2+]-binding protein, calmodulin, and its target peptide, M13, sandwiched between a yellow fluorescent protein variant, Venus, and an enhanced Renilla luciferase, RLuc8. Adjusting the relative dipole orientation of the luminescent protein's chromophores improved the dynamic range of BRET signal change in BRAC up to 60%, which is the largest dynamic range among BRET-based indicators reported so far. Using BRAC, we demonstrated successful visualization of Ca2+ dynamics at the single-cell level with temporal resolution at 1 Hz. Moreover, BRAC signals were acquired by ratiometric imaging capable of canceling out Ca^[2+]-independent signal drifts due to change in cell shape, focus shift, etc. Conclusions/Significance: The brightness and large dynamic range of BRAC should facilitate high-sensitive Ca2+ imaging not only in single live cells but also in small living subjects
    corecore