63 research outputs found

    Comparison of CORSIKA and COSMOS simulations

    Full text link
    Ultra-high-energy cosmic rays (UHECRs) refer to cosmic rays with energy above 10^{18} eV. UHECR experiments utilize simulations of extensive air shower to estimate the properties of UHECRs. The Telescope Array (TA) experiment employs the Monte Carlo codes of CORSIKA and COSMOS to obtain EAS simulations. In this paper, we compare the results of the simulations obtained from CORSIKA and COSMOS and report differences between them in terms of the longitudinal distribution, Xmax-value, calorimetric energy, and energy spectrum at ground.Comment: 4 pages, 6 figures, to appear in proceedings of UHECR2010 (AIP Conference Series

    Measurement of high-energy cosmic-ray electrons with a Polar Patrol Balloon

    Get PDF
    One of the major purpose of recent cosmic-ray studies is to know the origin, acceleration mechanism and propagation properties inside the Galaxy. Along this line many efforts have been spent to observe a precise spectrum of the electron component of cosmic-rays. The main difficulty to study high-energy electrons is the detection of these electrons. The flux is much lower than the abundant proton component, and we need an observation of long duration and a detector with a high rejection power against the background protons. We propose to carry a newly developed scintillating-fiber detector on the Polar Patrol Balloon (PPB) and to expose it for 30 days. The goal of this observation is to determine a definite electron energy-spectrum ranging from 10 GeV to TeV region based on a high statistical accuracy with a long exposure by the PPB. In the result, we can expect to obtain direct evidence for the origin of high-energy electrons and a precise knowledge of their propagation in the Galaxy including solar modulation effects on the electron flux

    The LHCf experiment at LHC

    Get PDF
    The LHCf experiment will be installed in 2007 on the LHC collider in the forward direction at ±140m from the ATLAS interaction point. The purpose of LHCf is to precisely measure the pion production cross section near zero degrees through the measurement of the photons produced in neutral pion decay. This measurement is crucial for the simulation of the showers induced in the atmosphere by very high energy cosmic rays; the 14 TeV energy available in the center of mass frame corresponds in fact to an equivalent energy of 1017 eV in the laboratory system. The paper focus on the proposed experiment and on the physics results that we expect from it

    High energy electron observation by Polar Patrol Balloon flight in Antarctica

    Get PDF
    We accomplished a balloon observation of the high-energy cosmic-ray electrons in 10-1000GeV to reveal the origin and the acceleration mechanism. The observation was carried out for 13 days at an average altitude of 35km by the Polar Patrol Balloon (PPB) around Antarctica in January 2004. The detector is an imaging calorimeter composed of scintillating-fiber belts and plastic scintillation counters sandwiched between lead plates. The geometrical factor is about 600cm^2sr, and the total thickness of lead absorber is 9 radiation lengths. The performance of the detector has been confirmed by a test flight at the Sanriku Balloon Center and by an accelerator beam test using the CERN-SPS (Super Proton Synchrotron at CERN). The new telemetry system using the Iridium satellite, the power system supplied by solar panels and the automatic flight level control operated successfully during the flight. We collected 5.7×10^3 events over 100GeV, and selected the electron candidates by a preliminary data analysis of the shower images. We report here an outline of both detector and observation, and the first result of the electron energy spectrum over 100GeV obtained by an electronic counter

    Forward photon energy spectrum at LHC 7 TeV p-p collisions measured by LHCf

    Get PDF
    Abstract The LHCf experiment is one of the LHC forward experiments. The aim is to measure the energy and the transverse momentum spectra of photons, neutrons and π 0 's at the very forward region (the pseudo-rapidity range of η > 8.4 ), which should be critical data to calibrate hadron interaction models used in the air shower simulations. LHCf successfully operated at s = 900 GeV and s = 7 TeV proton–proton collisions in 2009 and 2010. We present the first physics result, single photon energy spectra at s = 7 TeV proton–proton collisions and the pseudo-rapidity ranges of η > 10.94 and 8.81 η 8.9 . The obtained spectra were compared with the predictions by several hadron interaction models and the models do not reproduce the experimental results perfectly

    The energy spectrum of forward photons measured by the RHICf experiment in sqrt{s} = 510 GeV proton-proton collisions

    Get PDF
    The Relativistic Heavy Ion Collider forward (RHICf) experiment aims at understanding the high-energy hadronic interaction by measuring the cross sections of very forward neutral particles in proton-proton collisions at s\sqrt{s} = 510 GeV. For the analysis of the photon measurement, the trigger efficiency and the particle identification performance are studied by using the Monte Carlo simulation data and the experimental data. In the RHICf operation, two kinds of trigger modes (Shower, HighEM) were implemented. The trigger efficiency of the Shower trigger is 100%\% for photons with the energies more than 20 GeV. The HighEM trigger is designed to detect high energy photons effectively, and the trigger efficiency of the HighEM trigger is 90%\% for photons with the energies more than 130 GeV. The correction factor for the photon identification is calculated by using the efficiency and purity. It is found that this correction does not make a sizeable effect on the shape of the energy spectrum because the energy dependency of the factor is small

    Measurement of very forward particle production at RHIC with √s=510 GeV proton-proton collisions

    Get PDF
    The Relativistic Heavy Ion Collider forward (RHICf) experiment has measured neutral particles produced in the very forward direction in the √s=510 GeV proton-proton collisions at RHIC in June 2017. The production cross sections of these particles are crucial to understand the hadronic interaction relevant to the air shower development at the cosmic-ray equivalent energy of 1.4×1014^{14} eV, just below the energy of the knee. Together with the data at LHC, accelerator data can cover the interaction in the cosmic-ray energy of 1014^{14} eV to 1017^{17} eV. In addition, RHICf is able to improve the former measurements of single-spin asymmetry in the polarized proton- proton collisions that is sensitive to the fundamental process of the meson exchange. Common data taking with the STAR experiment will shed light on the unexplored low mass diffraction process

    Possible interpretations of the joint observations of UHECR arrival directions using data recorded at the Telescope Array and the Pierre Auger Observatory

    Get PDF

    タイキチュウノコウエネルギーウチュウセンショセイブンノスケーリングテキヨウソウノヤブレニツイテ

    No full text
    京都大学0048新制・論文博士理学博士乙第3728号論理博第633号新制||理||295(附属図書館)6026UT51-55-L496(主査)教授 長谷川 博一, 教授 三宅 弘三, 教授 町田 茂学位規則第5条第2項該当Kyoto UniversityDA
    corecore