394 research outputs found

    It is Not All Greek to Me: The Interconnectedness of a First Graderā€™s Greek and English Reading Strategies

    Get PDF
    The current study examined the literacy skills that a bilingual first grader uses when reading and discussing texts in Greek and English. I worked with a first grader, Lauren, and her mother. The study consisted of interviewing the participants, assessing Laurenā€™s literacy skills, and observing Lauren and her mother read together. The findings of this study were that Lauren uses the same literacy strategies when reading books in Greek and English (this finding is concurrent with other studies) Laurenā€™s reading skills in Greek are less advanced than her reading skills in English and that the student prefers reading in English, but likes to discuss texts in Greek. This study has implications for school librarians as well as for foreign language instruction

    Neuronal markers are expressed in human gliomas and NSE knockdown sensitizes glioblastoma cells to radiotherapy and temozolomide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Expression of neuronal elements has been identified in various glial tumors, and glioblastomas (GBMs) with neuronal differentiation patterns have reportedly been associated with longer survival. However, the neuronal class III Ī²-tubulin has been linked to increasing malignancy in astrocytomas. Thus, the significance of neuronal markers in gliomas is not established.</p> <p>Methods</p> <p>The expressions of class III Ī²-tubulin, neurofilament protein (NFP), microtubule-associated protein 2 (MAP2) and neuron-specific enolase (NSE) were investigated in five GBM cell lines and two GBM biopsies with immunocytochemistry and Western blot. Moreover, the expression levels were quantified by real-time qPCR under different culture conditions. Following NSE siRNA treatment we used Electric cell-substrate impedance sensing (ECIS) to monitor cell growth and migration and MTS assays to study viability after irradiation and temozolomide treatment. Finally, we quantitated NSE expression in a series of human glioma biopsies with immunohistochemistry using a morphometry software, and collected survival data for the corresponding patients. The biopsies were then grouped according to expression in two halves which were compared by survival analysis.</p> <p>Results</p> <p>Immunocytochemistry and Western blotting showed that all markers except NFP were expressed both in GBM cell lines and biopsies. Notably, qPCR demonstrated that NSE was upregulated in cellular stress conditions, such as serum-starvation and hypoxia, while we found no uniform pattern for the other markers. NSE knockdown reduced the migration of glioma cells, sensitized them to hypoxia, radio- and chemotherapy. Furthermore, we found that GBM patients in the group with the highest NSE expression lived significantly shorter than patients in the low-expression group.</p> <p>Conclusions</p> <p>Neuronal markers are aberrantly expressed in human GBMs, and NSE is consistently upregulated in different cellular stress conditions. Knockdown of NSE reduces the migration of GBM cells and sensitizes them to hypoxia, radiotherapy and chemotherapy. In addition, GBM patients with high NSE expression had significantly shorter survival than patients with low NSE expression. Collectively, these data suggest a role for NSE in the adaption to cellular stress, such as during treatment.</p

    Ī±-MSH regulates intergenic splicing of MC1R and TUBB3 in human melanocytes

    Get PDF
    Alternative splicing enables higher eukaryotes to increase their repertoire of proteins derived from a restricted number of genes. However, the possibility that functional diversity may also be augmented by splicing between adjacent genes has been largely neglected. Here, we show that the human melanocortin 1 receptor (MC1R) gene, a critical component of the facultative skin pigmentation system, has a highly complex and inefficient poly(A) site which is instrumental in allowing intergenic splicing between this locus and its immediate downstream neighbour tubulin-Ī²-III (TUBB3). These transcripts, which produce two distinct protein isoforms localizing to the plasma membrane and the endoplasmic reticulum, seem to be restricted to humans as no detectable chimeric mRNA could be found in MC1R expressing mouse melanocytes. Significantly, treatment with the MC1R agonist Ī±-MSH or activation of the stress response kinase p38-MAPK, both key molecules associated with ultraviolet radiation dermal insult and subsequent skin tanning, result in a shift in expression from MC1R in favour of chimeric MC1R-TUBB3 isoforms in cultured melanocytes. We propose that these chimeric proteins serve to equip melanocytes with novel cellular phenotypes required as part of the pigmentation response

    Inhibition of ERĪ² Induces Resistance to Cisplatin by Enhancing Rad51ā€“Mediated DNA Repair in Human Medulloblastoma Cell Lines

    Get PDF
    Cisplatin is one of the most widely used and effective anticancer drugs against solid tumors including cerebellar tumor of the childhood, Medulloblastoma. However, cancer cells often develop resistance to cisplatin, which limits therapeutic effectiveness of this otherwise effective genotoxic drug. In this study, we demonstrate that human medulloblastoma cell lines develop acute resistance to cisplatin in the presence of estrogen receptor (ER) antagonist, ICI182,780. This unexpected finding involves a switch from the G2/M to G1 checkpoint accompanied by decrease in ATM/Chk2 and increase in ATR/Chk1 phosphorylation. We have previously reported that ERĪ², which is highly expressed in medulloblastomas, translocates insulin receptor substrate 1 (IRS-1) to the nucleus, and that nuclear IRS-1 binds to Rad51 and attenuates homologous recombination directed DNA repair (HRR). Here, we demonstrate that in the presence of ICI182,780, cisplatin-treated medulloblastoma cells show recruitment of Rad51 to the sites of damaged DNA and increase in HRR activity. This enhanced DNA repair during the S phase preserved also clonogenic potential of medulloblastoma cells treated with cisplatin. In conclusion, inhibition of ERĪ² considered as a supplemental anticancer therapy, has been found to interfere with cisplatinā€“induced cytotoxicity in human medulloblastoma cell lines

    A Novel Xenogeneic Co-Culture System to Examine Neuronal Differentiation Capability of Various Adult Human Stem Cells

    Get PDF
    Background: Targeted differentiation of stem cells is mainly achieved by the sequential administration of defined growth factors and cytokines, although these approaches are quite artificial, cost-intensive and time-consuming. We now present a simple xenogeneic rat brain co-culture system which supports neuronal differentiation of adult human stem cells under more in vivo-like conditions. Methods and Findings: This system was applied to well-characterized stem cell populations isolated from human skin, parotid gland and pancreas. In addition to general multi-lineage differentiation potential, these cells tend to differentiate spontaneously into neuronal cell types in vitro and are thus ideal candidates for the introduced co-culture system. Consequently, after two days of co-culture up to 12% of the cells showed neuronal morphology and expressed corresponding markers on the mRNA and protein level. Additionally, growth factors with the ability to induce neuronal different iation in stem cells could be found in the media supernatants of the co-cultures. Conclusions: The co-culture system described here is suitable for testing neuronal differentiation capability of numerous types of stem cells. Especially in the case of human cells, it may be of clinical relevance for future cell-based therapeutic applications

    TRIM16 acts as a tumour suppressor by inhibitory effects on cytoplasmic vimentin and nuclear E2F1 in neuroblastoma cells

    Get PDF
    The family of tripartite-motif (TRIM) proteins are involved in diverse cellular processes, but are often characterized by critical proteinā€“protein interactions necessary for their function. TRIM16 is induced in different cancer types, when the cancer cell is forced to proceed down a differentiation pathway. We have identified TRIM16 as a DNA-binding protein with histone acetylase activity, which is required for the retinoic acid receptor Ī²2 transcriptional response in retinoid-treated cancer cells. In this study, we show that overexpressed TRIM16 reduced neuroblastoma cell growth, enhanced retinoid-induced differentiation and reduced tumourigenicity in vivo. TRIM16 was only expressed in the differentiated ganglion cell component of primary human neuroblastoma tumour tissues. TRIM16 bound directly to cytoplasmic vimentin and nuclear E2F1 in neuroblastoma cells. TRIM16 reduced cell motility and this required downregulation of vimentin. Retinoid treatment and enforced overexpression caused TRIM16 to translocate to the nucleus, and bind to and downregulate nuclear E2F1, required for cell replication. This study, for the first time, demonstrates that TRIM16 acts as a tumour suppressor, affecting neuritic differentiation, cell migration and replication through interactions with cytoplasmic vimentin and nuclear E2F1 in neuroblastoma cells

    Ī³-Tubulin 2 Nucleates Microtubules and Is Downregulated in Mouse Early Embryogenesis

    Get PDF
    Ī³-Tubulin is the key protein for microtubule nucleation. Duplication of the Ī³-tubulin gene occurred several times during evolution, and in mammals Ī³-tubulin genes encode proteins which share āˆ¼97% sequence identity. Previous analysis of Tubg1 and Tubg2 knock-out mice has suggested that Ī³-tubulins are not functionally equivalent. Tubg1 knock-out mice died at the blastocyst stage, whereas Tubg2 knock-out mice developed normally and were fertile. It was proposed that Ī³-tubulin 1 represents ubiquitous Ī³-tubulin, while Ī³-tubulin 2 may have some specific functions and cannot substitute for Ī³-tubulin 1 deficiency in blastocysts. The molecular basis of the suggested functional difference between Ī³-tubulins remains unknown. Here we show that exogenous Ī³-tubulin 2 is targeted to centrosomes and interacts with Ī³-tubulin complex proteins 2 and 4. Depletion of Ī³-tubulin 1 by RNAi in U2OS cells causes impaired microtubule nucleation and metaphase arrest. Wild-type phenotype in Ī³-tubulin 1-depleted cells is restored by expression of exogenous mouse or human Ī³-tubulin 2. Further, we show at both mRNA and protein levels using RT-qPCR and 2D-PAGE, respectively, that in contrast to Tubg1, the Tubg2 expression is dramatically reduced in mouse blastocysts. This indicates that Ī³-tubulin 2 cannot rescue Ī³-tubulin 1 deficiency in knock-out blastocysts, owing to its very low amount. The combined data suggest that Ī³-tubulin 2 is able to nucleate microtubules and substitute for Ī³-tubulin 1. We propose that mammalian Ī³-tubulins are functionally redundant with respect to the nucleation activity

    StearoylCoA Desaturase-5: A Novel Regulator of Neuronal Cell Proliferation and Differentiation

    Get PDF
    Recent studies have demonstrated that human stearoylCoA desaturase-1 (SCD1), a Ī”9-desaturase that converts saturated fatty acids (SFA) into monounsaturated fatty acids, controls the rate of lipogenesis, cell proliferation and tumorigenic capacity in cancer cells. However, the biological function of stearoylCoA desaturase-5 (SCD5), a second isoform of human SCD that is highly expressed in brain, as well as its potential role in human disease, remains unknown. In this study we report that the constitutive overexpression of human SCD5 in mouse Neuro2a cells, a widely used cell model of neuronal growth and differentiation, displayed a greater n-7 MUFA-to-SFA ratio in cell lipids compared to empty-vector transfected cells (controls). De novo synthesis of phosphatidylcholine and cholesterolesters was increased whereas phosphatidylethanolamine and triacylglycerol formation was reduced in SCD5-expressing cells with respect to their controls, suggesting a differential use of SCD5 products for lipogenic reactions. We also observed that SCD5 expression markedly accelerated the rate of cell proliferation and suppressed the induction of neurite outgrowth, a typical marker of neuronal differentiation, by retinoic acid indicating that the desaturase plays a key role in the mechanisms of cell division and differentiation. Critical signal transduction pathways that are known to modulate these processes, such epidermal growth factor receptor (EGFR)Akt/ERK and Wnt, were affected by SCD5 expression. Epidermal growth factor-induced phosphorylation of EGFR, Akt and ERK was markedly blunted in SCD5-expressing cells. Furthermore, the activity of canonical Wnt was reduced whereas the non-canonical Wnt was increased by the presence of SCD5 activity. Finally, SCD5 expression increased the secretion of recombinant Wnt5a, a non-canonical Wnt, whereas it reduced the cellular and secreted levels of canonical Wnt7b. Our data suggest that, by a coordinated modulation of key lipogenic pathways and transduction signaling cascades, SCD5 participates in the regulation of neuronal cell growth and differentiation
    • ā€¦
    corecore