294 research outputs found

    potential biomarkers of haemophilic arthropathy correlations with compatible additive magnetic resonance imaging scores

    Get PDF
    Introduction: Although biomarkers are useful diagnostic tools to assess joint damage in osteoarthritis and rheumatoid arthritis, few data exist for biomarkers of haemophilic arthropathy. Aim: To evaluate the association between biomarkers and compatible additive magnetic resonance imaging (MRI) scores in patients with severe haemophilia A. Methods: Patients aged 12–35 years with no history of factor VIII (FVIII) inhibitors were enrolled in a controlled, cross-sectional, multinational investigation. Patients received primary or secondary prophylaxis or on-demand treatment with FVIII and underwent MRI on four joints (two ankles, two knees). Soluble biomarkers of cartilage and bone degradation, inflammation, and angiogenesis were assessed (serum levels of C-terminal telopeptides of type I collagen [CTX-I], cartilage oligomeric matrix protein [COMP], chondroitin-sulphate aggrecan turnover 846 epitope [CS846], tissue inhibitor of metalloproteinase 1 [TIMP-1]; plasma levels of vascular endothelial growth factor [VEGF], matrix metalloproteinases 3 and 9 [MMP3, MMP9]). Relationships between biomarkers and MRI scores were evaluated using Spearman rank correlation. Results: Biomarkers were assessed in 117 of 118 per-protocol patients. Mean and median CTX-I, COMP, TIMP-1, MMP3, MMP9, and VEGF values were within normal ranges (reference range not available for CS846 in healthy volunteers). No correlations between biomarkers and MRI scores were found, with the exception of CS846, which showed significant correlation in a subgroup of 22 on-demand patients (r = 0.436; P = 0.04). Conclusions: Compatible additive MRI scores showed no clear correlations with any of the potential biomarkers for haemophilic arthropathy in the overall population. CS846 levels were significantly correlated with MRI scores in patients treated on demand. (Less

    Brd2/4 and Myc regulate alternative cell lineage programmes during early osteoclast differentiation in vitro

    Get PDF
    Osteoclast (OC) development in response to nuclear factor kappa-Î’ ligand (RANKL) is critical for bone homeostasis in health and in disease. The early and direct chromatin regulatory changes imparted by the BET chromatin readers Brd2-4 and OC-affiliated transcription factors (TFs) during osteoclastogenesis are not known. Here, we demonstrate that in response to RANKL, early OC development entails regulation of two alternative cell fate transcriptional programmes, OC vs macrophage, with repression of the latter following activation of the former. Both programmes are regulated in a non-redundant manner by increased chromatin binding of Brd2 at promoters and of Brd4 at enhancers/super-enhancers. Myc, the top RANKL-induced TF, regulates OC development in co-operation with Brd2/4 and Max and by establishing negative and positive regulatory loops with other lineage-affiliated TFs. These insights into the transcriptional regulation of osteoclastogenesis suggest the clinical potential of selective targeting of Brd2/4 to abrogate pathological OC activation

    MAF functions as a pioneer transcription factor that initiates and sustains myelomagenesis

    Get PDF
    Deregulated expression of lineage-affiliated transcription factors (TFs) is a major mechanism of oncogenesis. However, how the deregulation of nonlineage affiliated TF affects chromatin to initiate oncogenic transcriptional programs is not well-known. To address this, we studied the chromatin effects imposed by oncogenic MAF as the cancer-initiating driver in the plasma cell cancer multiple myeloma. We found that the ectopically expressed MAF endows myeloma plasma cells with migratory and proliferative transcriptional potential. This potential is regulated by the activation of enhancers and superenhancers, previously inactive in healthy B cells and plasma cells, and the cooperation of MAF with the plasma cell-defining TF IRF4. Forced ectopic MAF expression confirms the de novo ability of oncogenic MAF to convert transcriptionally inert chromatin to active chromatin with the features of superenhancers, leading to the activation of the MAF-specific oncogenic transcriptome and the acquisition of cancer-related cellular phenotypes such as CCR1-dependent cell migration. These findings establish oncogenic MAF as a pioneer transcription factor that can initiate as well as sustain oncogenic transcriptomes and cancer phenotypes. However, despite its pioneer function, myeloma cells remain MAF-dependent, thus validating oncogenic MAF as a therapeutic target that would be able to circumvent the challenges of subsequent genetic diversification driving disease relapse and drug resistance

    Chromatin-based, in cis and in trans regulatory rewiring underpins distinct oncogenic transcriptomes in multiple myeloma

    Get PDF
    Multiple myeloma is a genetically heterogeneous cancer of the bone marrow plasma cells (PC). Distinct myeloma transcriptome profiles are primarily driven by myeloma initiating events (MIE) and converge into a mutually exclusive overexpression of the CCND1 and CCND2 oncogenes. Here, with reference to their normal counterparts, we find that myeloma PC enhanced chromatin accessibility combined with paired transcriptome profiling can classify MIE-defined genetic subgroups. Across and within different MM genetic subgroups, we ascribe regulation of genes and pathways critical for myeloma biology to unique or shared, developmentally activated or de novo formed candidate enhancers. Such enhancers co-opt recruitment of existing transcription factors, which although not transcriptionally deregulated per se, organise aberrant gene regulatory networks that help identify myeloma cell dependencies with prognostic impact. Finally, we identify and validate the critical super-enhancer that regulates ectopic expression of CCND2 in a subset of patients with MM and in chronic lymphocytic leukemia

    Bio-psychosocial determinants of cardiovascular disease in a rural population on Crete, Greece: formulating a hypothesis and designing the SPILI-III study

    Get PDF
    Background: In 1988, the SPILI project was established in order to evaluate the cardiovascular disease (CVD) risk profile of the inhabitants of Spili, in rural Crete, Greece. The first reports from this project revealed that against the unfavourable risk factors’ profile observed, only a few men with a previous myocardial infarction were encountered. A follow-up study (SPILI II) was performed twelve years after the initial examination, and the unfavourable cardiovascular risk profile was re-confirmed. Presentation of the Hypothesis: This paper presents a hypothesis formulated on the basis of previous research to investigate if dynamic psycho-social determinants, including social coherence of the local community, religiosity and spirituality, are protective against the development of coronary heart disease in a well-defined population. Testing the Hypothesis: A follow-up examination of this Cretan cohort is currently being performed to assess the link between psychosocial factors and CVD. Psychosocial factors including sense of control, religiosity and spirituality are assessed in together with conventional CVD risk factors. Smoking and alcohol consumption, as well as dietary habits and activity levels are recorded. Oxidative stress and inflammatory markers, as well as ultrasound measurement of carotid intima media thickness, a preclinical marker of atherosclerosis, will also be measured. Implications of the hypothesis tested: The issue of the cardio-protective effect of psycho-social factors would be revisited based on the results of this Cretan cohort; nevertheless, further research is needed across different subpopulations in order to establish a definite relationship. A comprehensive approach based on the aspects of biosocial life may result in more accurate CVD risk management

    The innate sensor ZBP1-IRF3 axis regulates cell proliferation in multiple myeloma

    Get PDF
    Multiple myeloma is a malignancy of plasma cells (PC) initiated and driven by primary and secondary genetic events. Nevertheless, myeloma PC survival and proliferation might be sustained by non-genetic drivers. Z-DNA-binding protein 1 (ZBP1; also known as DAI) is an interferon-inducible, Z-nucleic acid sensor that triggers RIPK3-MLKL-mediated necroptosis in mice. ZBP1 also interacts with TBK1 and the transcription factor IRF3 but the function of this interaction is unclear, and the role of ZBP1-IRF3 axis in cancer is not known. Here we show that ZBP1 is selectively expressed in late B cell development in both human and mouse cells and it is required for optimal T-cell-dependent humoral immune responses. In myeloma PC, interaction of constitutively expressed ZBP1 with TBK1 and IRF3 results in IRF3 phosphorylation. IRF3 directly binds and activates cell cycle genes, in part through co-operation with the PC lineage-defining transcription factor IRF4, and thereby promoting myeloma cell proliferation. This generates a novel, potentially therapeutically targetable and relatively selective myeloma cell addiction to the ZBP1-IRF3 axis. Our data also show a non-canonical function of constitutive ZBP1 in human cells and expand our knowledge of the role of cellular immune sensors in cancer biology

    A multimodal dataset for authoring and editing multimedia content:the MAMEM project

    Get PDF
    We present a dataset that combines multimodal biosignals and eye tracking information gathered under a human-computer interaction framework. The dataset was developed in the vein of the MAMEM project that aims to endow people with motor disabilities with the ability to edit and author multimedia content through mental commands and gaze activity. The dataset includes EEG, eye-tracking, and physiological (GSR and Heart rate) signals collected from 34 individuals (18 able-bodied and 16 motor-impaired). Data were collected during the interaction with specifically designed interface for web browsing and multimedia content manipulation and during imaginary movement tasks. The presented dataset will contribute towards the development and evaluation of modern human-computer interaction systems that would foster the integration of people with severe motor impairments back into society.</p

    Insight on genes affecting tuber development in potato upon <i>Potato spindle tuber viroid</i> (PSTVd) infection

    Get PDF
    Potato (Solanum tuberosum L) is a natural host of Potato spindle tuber viroid (PSTVd) which can cause characteristic symptoms on developing plants including stunting phenotype and distortion of leaves and tubers. PSTVd is the type species of the family Pospiviroidae, and can replicate in the nucleus and move systemically throughout the plant. It is not well understood how the viroid can affect host genes for successful invasion and which genes show altered expression levels upon infection. Our primary focus in this study is the identification of genes which can affect tuber formation since viroid infection can strongly influence tuber development and especially tuber shape. In this study, we used a large-scale method to identify differentially expressed genes in potato. We have identified defence, stress and sugar metabolism related genes having altered expression levels upon infection. Additionally, hormone pathway related genes showed significant up- or down-regulation. DWARF1/DIMINUTO, Gibberellin 7-oxidase and BEL5 transcripts were identified and validated showing differential expression in viroid infected tissues. Our study suggests that gibberellin and brassinosteroid pathways have a possible role in tuber development upon PSTVd infection

    MAF functions as a pioneer transcription factor that initiates and sustains myelomagenesis

    Get PDF
    Deregulated expression of lineage-affiliated transcription factors (TFs) is a major mechanism of oncogenesis. However, how the deregulation of nonlineage affiliated TF affects chromatin to initiate oncogenic transcriptional programs is not well-known. To address this, we studied the chromatin effects imposed by oncogenic MAF as the cancer-initiating driver in the plasma cell cancer multiple myeloma. We found that the ectopically expressed MAF endows myeloma plasma cells with migratory and proliferative transcriptional potential. This potential is regulated by the activation of enhancers and superenhancers, previously inactive in healthy B cells and plasma cells, and the cooperation of MAF with the plasma cell-defining TF IRF4. Forced ectopic MAF expression confirms the de novo ability of oncogenic MAF to convert transcriptionally inert chromatin to active chromatin with the features of superenhancers, leading to the activation of the MAF-specific oncogenic transcriptome and the acquisition of cancer-related cellular phenotypes such as CCR1-dependent cell migration. These findings establish oncogenic MAF as a pioneer transcription factor that can initiate as well as sustain oncogenic transcriptomes and cancer phenotypes. However, despite its pioneer function, myeloma cells remain MAF-dependent, thus validating oncogenic MAF as a therapeutic target that would be able to circumvent the challenges of subsequent genetic diversification driving disease relapse and drug resistance

    Chromatin-based, in cis and in trans regulatory rewiring underpins distinct oncogenic transcriptomes in multiple myeloma

    Get PDF
    Multiple myeloma is a genetically heterogeneous cancer of the bone marrow plasma cells (PC). Distinct myeloma transcriptome profiles are primarily driven by myeloma initiating events (MIE) and converge into a mutually exclusive overexpression of the CCND1 and CCND2 oncogenes. Here, with reference to their normal counterparts, we find that myeloma PC enhanced chromatin accessibility combined with paired transcriptome profiling can classify MIE-defined genetic subgroups. Across and within different MM genetic subgroups, we ascribe regulation of genes and pathways critical for myeloma biology to unique or shared, developmentally activated or de novo formed candidate enhancers. Such enhancers co-opt recruitment of existing transcription factors, which although not transcriptionally deregulated per se, organise aberrant gene regulatory networks that help identify myeloma cell dependencies with prognostic impact. Finally, we identify and validate the critical super-enhancer that regulates ectopic expression of CCND2 in a subset of patients with MM and in chronic lymphocytic leukemia
    • …
    corecore