25 research outputs found

    Topical formulations of miltefosine for cutaneous leishmaniasis in a BALB/c mouse model.

    Get PDF
    UNLABELLED: Cutaneous leishmaniasis (CL) is caused by several species of the protozoan parasite Leishmania and affects approximately 10 million people worldwide. Currently available drugs are not ideal due to high cost, toxicity, parenteral administration and suboptimal efficacy. Miltefosine is the only oral treatment (Impavido®) available to treat CL, given over a period of 28 days with common side effects such as vomiting and diarrhoea. OBJECTIVE: To explore the local application of miltefosine as a topical formulation to enhance activity and reduce the drug's adverse effects. METHODS: The antileishmanial activity of miltefosine was confirmed in vitro against several Leishmania species. The permeation of miltefosine, in different solvents and solvent combinations, through BALB/c mouse skin was evaluated in vitro using Franz diffusion cells. The topical formulations which enabled the highest drug permeation or skin disposition were tested in vivo in BALB/c mice infected with L. major. KEY FINDINGS: The overall permeation of miltefosine through skin was low regardless of the solvents used. This was reflected in limited antileishmanial activity of the drug formulations when applied topically in vivo. All topical formulations caused skin irritation. CONCLUSIONS: We conclude that miltefosine is not an appropriate candidate for the topical treatment of CL

    Pharmacokinetics and pharmacodynamics in the treatment of cutaneous leishmaniasis - challenges and opportunities.

    Get PDF
    Pharmacological efficacy is obtained when adequate concentrations of a potent drug reach the target site. In cutaneous leishmaniasis, a heterogeneous disease characterised by a variety of skin manifestations from simple nodules, skin discoloration, plaques to extensive disseminated forms, the parasites are found in the dermal layers of the skin. Treatment thus involves the release of the active compound from the formulation (administered either topically or systemically), it's permeation into the skin, accumulation by the local macrophages and further transport into the phagolysosome of the macrophage. The pharmacodynamic activity of a drug against the parasite is relatively straight forward to evaluate both in vivo and in vitro. The pharmacokinetic processes taking place inside the skin are more complex to elucidate due to the multi-lamellar structure of the skin, heterogeneous distribution of drugs within the tissue, the difficulty of accessing the site of infection complicating sampling and the lack of surrogate markers reflecting the activity of a drug in the skin. This review will discuss the difficulties encountered when investigating drug distribution, PK PD relationships and efficacy in the skin with a focus on cutaneous leishmaniasis treatment

    Efficacy of Paromomycin-Chloroquine Combination Therapy in Experimental Cutaneous Leishmaniasis.

    Get PDF
    The 4-aminoquinoline chloroquine (CQ) is clinically used in combination with doxycycline to cure chronic Q fever, as it enhances the activity of the antibiotic against the causative bacterium Coxiella burnetii residing within macrophage phagolysosomes. As there is a similar cellular host-pathogen biology for Leishmania parasites, this study aimed to determine whether such an approach could also be the basis for a new, improved treatment for cutaneous leishmaniasis (CL). We have evaluated the in vitro and in vivo activities of combinations of CQ with the standard drugs paromomycin (PM), miltefosine, and amphotericin B against Leishmania major and Leishmania mexicana In 72-h intracellular antileishmanial assays, outcomes were variable for different drugs. Significantly, the addition of 10 μM CQ to PM reduced 50% effective concentrations (EC50s) by over 5-fold against L. major and against normally insensitive L. mexicana parasites. In murine models of L. major and L. mexicana CL, daily coadministration of 50 mg/kg of body weight PM and 25 mg/kg CQ for 10 days resulted in a significant reduction in lesion size but not in parasite load compared to those for mice given the same doses of PM alone. Overall, our data indicate that PM-CQ combination therapy is unlikely to be a potential candidate for further preclinical development

    Activity of Amphotericin B-Loaded Chitosan Nanoparticles against Experimental Cutaneous Leishmaniasis.

    Get PDF
    Chitosan nanoparticles have gained attention as drug delivery systems (DDS) in the medical field as they are both biodegradable and biocompatible with reported antimicrobial and anti-leishmanial activities. We investigated the application of chitosan nanoparticles as a DDS for the treatment of cutaneous leishmaniasis (CL) by preparing two types of chitosan nanoparticles: positively charged with tripolyphosphate sodium (TPP) and negatively charged with dextran sulphate. Amphotericin B (AmB) was incorporated into these nanoparticles. Both types of AmB-loaded nanoparticles demonstrated in vitro activity against Leishmania major intracellular amastigotes, with similar activity to unencapsulated AmB, but with a significant lower toxicity to KB-cells and red blood cells. In murine models of CL caused by L. major, intravenous administration of AmB-loaded chitosan-TPP nanoparticles (Size = 69 ± 8 nm, Zeta potential = 25.5 ± 1 mV, 5 mg/kg/for 10 days on alternate days) showed a significantly higher efficacy than AmBisome® (10 mg/kg/for 10 days on alternate days) in terms of reduction of lesion size and parasite load (measured by both bioluminescence and qPCR). Poor drug permeation into and through mouse skin, using Franz diffusion cells, showed that AmB-loaded chitosan nanoparticles are not appropriate candidates for topical treatment of CL

    Relation between Skin Pharmacokinetics and Efficacy in AmBisome Treatment of Murine Cutaneous Leishmaniasis.

    Get PDF
    AmBisome (LAmB), a liposomal formulation of amphotericin B (AmB), is a second-line treatment for the parasitic skin disease cutaneous leishmaniasis (CL). Little is known about its tissue distribution and pharmacodynamics to inform clinical use in CL. Here, we compared the skin pharmacokinetics of LAmB with those of the deoxycholate form of AmB (DAmB; trade name Fungizone) in murine models of Leishmania major CL. Drug levels at the target site (the localized lesion) 48 h after single intravenous (i.v.) dosing of the individual AmB formulations (1 mg/kg of body weight) were similar but were 3-fold higher for LAmB than for DAmB on day 10 after multiple administrations (1 mg/kg on days 0, 2, 4, 6, and 8). After single and multiple dosing, intralesional concentrations were 5- and 20-fold, respectively, higher than those in the healthy control skin of the same infected mice. We then evaluated how drug levels in the lesion after LAmB treatment relate to therapeutic outcomes. After five administrations of the drug at 0, 6.25, or 12.5 mg/kg (i.v.), there was a clear correlation between dose level, intralesional AmB concentration, and relative reduction in parasite load and lesion size (R2 values of >0.9). This study confirms the improved efficacy of the liposomal over the deoxycholate AmB formulation in experimental CL, which is related to higher intralesional drug accumulation

    Leishmaniasis immunopathology-impact on design and use of vaccines, diagnostics and drugs.

    Get PDF
    Leishmaniasis is a disease complex caused by 20 species of protozoan parasites belonging to the genus Leishmania. In humans, it has two main clinical forms, visceral leishmaniasis (VL) and cutaneous or tegumentary leishmaniasis (CL), as well as several other cutaneous manifestations in a minority of cases. In the mammalian host Leishmania parasites infect different populations of macrophages where they multiply and survive in the phagolysosomal compartment. The progression of both VL and CL depends on the maintenance of a parasite-specific immunosuppressive state based around this host macrophage infection. The complexity and variation of immune responses and immunopathology in humans and the different host interactions of the different Leishmania species has an impact upon the effectiveness of vaccines, diagnostics and drugs

    Local Skin Inflammation in Cutaneous Leishmaniasis as a Source of Variable Pharmacokinetics and Therapeutic Efficacy of Liposomal Amphotericin B.

    Get PDF
    Disfiguring skin lesions caused by several species of the Leishmania parasite characterize cutaneous leishmaniasis (CL). Successful treatment of CL with intravenous (i.v.) liposomal amphotericin B (LAmB) relies on the presence of adequate antibiotic concentrations at the dermal site of infection within the inflamed skin. Here, we have investigated the impact of the local skin inflammation on the pharmacokinetics (PK) and efficacy of LAmB in two murine models of localized CL (Leishmania major and Leishmania mexicana) at three different stages of disease (papule, initial nodule, and established nodule). Twenty-four hours after the administration of one 25 mg/kg of body weight LAmB (i.v.) dose to infected BALB/c mice (n = 5), drug accumulation in the skin was found to be dependent on the causative parasite species (L. major > L. mexicana) and the disease stage (papule > initial nodule > established nodule > healthy skin). Elevated tissue drug levels were associated with increased vascular permeability (Evans blue assay) and macrophage infiltration (histomorphometry) in the infected skin, two pathophysiological parameters linked to tissue inflammation. After identical treatment of CL in the two models with 5 × 25 mg/kg LAmB (i.v.), intralesional drug concentrations and reductions in lesion size and parasite load (quantitative PCR [qPCR]) were all ≥2-fold higher for L. major than for L. mexicana In conclusion, drug penetration of LAmB into CL skin lesions could depend on the disease stage and the causative Leishmania species due to the influence of local tissue inflammation

    Film-Forming Systems for the Delivery of DNDI-0690 to Treat Cutaneous Leishmaniasis.

    Get PDF
    In cutaneous leishmaniasis (CL), parasites reside in the dermis, creating an opportunity for local drug administration potentially reducing adverse effects and improving treatment adherence compared to current therapies. Polymeric film-forming systems (FFSs) are directly applied to the skin and form a thin film as the solvent evaporates. In contrast to conventional topical dosage forms, FFSs strongly adhere to the skin, favouring sustained drug delivery to the affected site, reducing the need for frequent applications, and enhancing patient compliance. This study reports the first investigation of the use of film-forming systems for the delivery of DNDI-0690, a nitroimidazole compound with potent activity against CL-causing Leishmania species. A total of seven polymers with or without plasticiser were evaluated for drying time, stickiness, film-flexibility, and cosmetic attributes; three FFSs yielded a positive evaluation for all test parameters. The impact of each of these FFSs on the permeation of the model skin permeant hydrocortisone (hydrocortisone, 1% (w/v) across the Strat-M membrane was evaluated, and the formulations resulting in the highest and lowest permeation flux (Klucel LF with triethyl citrate and Eudragit RS with dibutyl sebacate, respectively) were selected as the FFS vehicle for DNDI-0690. The release and skin distribution of the drug upon application to Leishmania-infected and uninfected BALB/c mouse skin were examined using Franz diffusion cells followed by an evaluation of the efficacy of both DNDI-0690 FFSs (1% (w/v)) in an experimental CL model. Whereas the Eudragit film resulted in a higher permeation of DNDI-0690, the Klucel film was able to deposit four times more drug into the skin, where the parasite resides. Of the FFSs formulations, only the Eudragit system resulted in a reduced parasite load, but not reduced lesion size, when compared to the vehicle only control. Whereas drug delivery into the skin was successfully modulated using different FFS systems, the FFS systems selected were not effective for the topical application of DNDI-0690. The convenience and aesthetic of FFS systems alongside their ability to modulate drug delivery to and into the skin merit further investigation using other promising antileishmanial drugs

    An efficient and novel technology for the extraction of parasite genomic DNA from whole blood or culture

    Get PDF
    The aim of this study was to assess pathogen DNA extraction with a new spin column-based method (DNA-XT). DNA from either whole-blood samples spiked with Plasmodium falciparum or Leishmania donovani amastigote culture was extracted with DNA-XT and compared with that produced by a commercial extraction kit (DNeasy®). Eluates from large and small sample volumes were assessed by PCR and spectroscopy. Using a small volume (5 μl) of blood, the DNA-XT and DNeasy methods produced eluates with similar DNA concentrations (0.63 vs 1.06 ng/μl, respectively). The DNA-XT method produced DNA with lower PCR inhibition than DNeasy. The new technique was also twice as fast and required fewer plastics and manipulations but had reduced total recovered DNA compared with DNeasy

    Topical Treatment for Cutaneous Leishmaniasis: Dermato-Pharmacokinetic Lead Optimization of Benzoxaboroles.

    Get PDF
    Cutaneous leishmaniasis (CL) is caused by several species of the protozoan parasite Leishmania, affecting an estimated 10 million people worldwide. Previously reported strategies for the development of topical CL treatments have focused primarily on drug permeation and formulation optimization as the means to increase treatment efficacy. Our approach aims to identify compounds with antileishmanial activity and properties consistent with topical administration. Of the test compounds, five benzoxaboroles showed potent activity (50% effective concentration [EC50] < 5 μM) against intracellular amastigotes of at least one Leishmania species and acceptable activity (20 μM < EC50 < 30 μM) against two more species. Benzoxaborole compounds were further prioritized on the basis of the in vitro evaluation of progression criteria related to skin permeation, such as the partition coefficient and solubility. An MDCKII-hMDR1 cell assay showed overall good permeability and no significant interaction with the P-glycoprotein transporter for all substrates except LSH002 and LSH031. The benzoxaboroles were degraded, to some extent, by skin enzymes but had stability superior to that of para-hydroxybenzoate compounds, which are known skin esterase substrates. Evaluation of permeation through reconstructed human epidermis showed LSH002 to be the most permeant, followed by LSH003 and LSH001. Skin disposition studies following finite drug formulation application to mouse skin demonstrated the highest permeation for LSH001, followed by LSH003 and LSH002, with a significantly larger amount of LSH001 than the other compounds being retained in skin. Finally, the efficacy of the leads (LSH001, LSH002, and LSH003) against Leishmania major was tested in vivo LSH001 suppressed lesion growth upon topical application, and LSH003 reduced the lesion size following oral administration
    corecore