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ABSTRACT  26 

Disfiguring skin lesions caused by several species of the Leishmania parasite characterize cutaneous 27 

leishmaniasis (CL). Successful treatment of CL with intravenous (IV) liposomal amphotericin B 28 

(LAmB) relies on the presence of adequate antibiotic concentrations at the dermal site of infection 29 

within the inflamed skin. Here, we have investigated the impact of the local skin inflammation on the 30 

pharmacokinetics (PK) and efficacy of LAmB in two murine models of localized CL (Leishmania major 31 

and Leishmania mexicana) at three different stages of disease (papule, initial nodule and established 32 

nodule). Twenty-four hours after administration of 1 x 25 mg/kg LAmB (IV) to infected BALB/c mice 33 

(n=5), drug accumulation in skin was found to be dependent on the causative parasite species (L. 34 

major > L. mexicana) and the disease stage (papule > initial nodule > established nodule > healthy 35 

skin). Elevated tissue drug levels were associated with increased vascular permeability (Evans Blue 36 

assay) and macrophage infiltration (histomorphometry) in the infected skin, two pathophysiological 37 

parameters linked to tissue inflammation. After identical treatment of CL in the two models with 5 x 25 38 

mg/kg LAmB (IV), intralesional drug concentrations and reductions in lesion size and parasite load 39 

(qPCR) were all ≥ 2-fold higher for L. major compared to L. mexicana. In conclusion, drug penetration 40 

of LAmB into CL skin lesions could depend on the disease stage and the causative Leishmania 41 

species due to the influence of local tissue inflammation.    42 

 43 

KEYWORDS 44 
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 46 

INTRODUCTION 47 

Leishmaniasis is a vector-borne neglected tropical disease caused by over 20 distinct species of the 48 

protozoan Leishmania parasite. The two main forms, visceral (VL) and cutaneous leishmaniasis (CL), 49 

continue to pose a major public health problem with significant socioeconomic burden worldwide (1). 50 

Current estimates show a global annual incidence of one million, 12 million prevalent cases in 98 51 

countries and over 350 million people at risk of infection (2). CL presents as a wide clinical spectrum 52 

of skin syndromes, ranging from severe and rare mucosal (MCL), diffuse (DCL) or chronic to the more 53 
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common, uncomplicated localized (LCL) lesions. In LCL, single or a limited number of lesions form at 54 

the bite site of the parasite-infected female sand fly. A small papule forms, which develops into an 55 

initial nodule and then an established nodule with signs of exudation and/or crust formation. The 56 

nodule progressively ulcerates and eventually leaves an open wound with raised borders and a 57 

crater-like appearance. In most cases, such ulcers slowly self-heal, but leave permanent, disfiguring 58 

scars on the exposed skin areas that are often the cause of serious social stigma (3). Tissue damage 59 

and disease in CL are primarily caused by an excessive host immune response against the 60 

intracellular infection of dermal macrophages by Leishmania (4). As the dermis fills with a dense and 61 

diffuse mixed inflammatory cell infiltrate (including macrophages, lymphocytes, neutrophils, mast cells 62 

and plasma cells), the associated oedema drives swelling of the tissue. Epidermal changes 63 

(hyperkeratosis, acanthosis and degeneration of the basal layer), connective tissue damage (collagen 64 

lysis) and the formation of non-caseating granuloma can occur (5-9). The immunopathology of LCL 65 

shows both similarities (chronic, often ulcerative, dermatosis) and differences (clinical presentation, 66 

incubation and resolution time) among different causative Leishmania species (10, 11). For example, 67 

Old World L. major causes so-called ‘wet’ and acute (early ulcerative) CL lesions in the Middle East: 68 

large, irregular and often oozing wounds, which rapidly progress and heal over two to six months (12, 69 

13). In Central America, New World L. mexicana is the responsible agent for “chiclero’s ulcers”, 70 

chronic lesions typically found on the ear which spontaneously re-epithelize over a period lasting 71 

months to even years (14, 15). In a minority of CL cases caused by L. major and L. mexicana, 72 

alternative types of skin lesions with different clinical presentations and immune response can 73 

develop (12-15).  74 

Treatment of CL is problematic; long series of painful injections with the toxic pentavalent antimonials 75 

remain the standard therapy (16). A better tolerated, but expensive second-line drug requiring 76 

intravenous (IV) administration and cold chain, is AmBisome® (LAmB) (17). LAmB is a unilamellar 77 

liposomal formulation of the polyene antibiotic amphotericin B (AmB), which forms cidal pores in the 78 

leishmanial cell membranes by ergosterol binding (18). Several treatment regimens for a total 79 

cumulative dose of 20-25 mg/kg are efficacious against CL and MCL (19). However, therapeutic 80 

responses vary for the different causative Leishmania species, populations, geographical regions and 81 

clinical settings (20).  82 
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We have recently demonstrated that the efficacy of LAmB in murine CL relies on adequate exposure 83 

of the active compound amphotericin B (AmB) at the local site of infection, the skin lesion. Moreover, 84 

we also showed higher drug disposition in diseased compared to healthy skin (21). Altered 85 

pharmacokinetics (PK) at sites of tissue inflammation have been reported previously for antimicrobials 86 

(22), anti-inflammatory agents (23) and cancer chemotherapeutics (24). Based on these observations, 87 

we formulated three hypotheses.  88 

First, the preferential drug distribution of LAmB in CL lesions over uninfected skin can be explained by 89 

the presence and the severity of the local skin inflammation. This could vary among different disease 90 

stages of CL and among causative parasite species. In the context of LCL skin inflammation, we have 91 

focussed only on aspects potentially relevant to the pharmacological action of liposomal drugs. The 92 

inflammatory response against the Leishmania infection at the skin inoculation site involves increased 93 

vascular permeability and vasodilatation of dermal blood vessels and the infiltration of several types of 94 

immune cells including macrophages that play a role in tissue swelling and the formation of skin 95 

lesions. Second, the underlying mechanisms for altered drug distribution at the inflammatory site are, 96 

at least in part, local capillary leakiness (25-28) and influx of drug-loaded macrophages into the skin 97 

(29-34). Third and final, AmB levels accumulating in lesions following LAmB treatment can be source 98 

of variability in treatment outcomes against different Leishmania species. To test the first two 99 

hypotheses, we studied the skin PK of LAmB after administration of a single high dose (1 x 25 mg/kg, 100 

IV), as well as pathophysiological parameters that could influence the drug distribution process from 101 

blood to skin using the Evans Blue assay (35-37) and histomorphometry. This was done in infected 102 

mice and in control mice with variable degrees of skin inflammation: none (uninfected), high 103 

(pseudolesion PL, a new mouse model of local skin inflammation based on the rat paw oedema 104 

model (38, 39)), or low (healed lesion HL, cure of CL by paromomycin sulphate (40)). Figure 1 gives 105 

an overview of the experimental groups and procedures. To investigate the third hypothesis, we 106 

compared intralesional drug accumulation and efficacy in L. major and L. mexicana murine CL 107 

following treatment with an identical LAmB dose regimen (5 x 25 mg/kg, IV).  108 

 109 

RESULTS 110 

Pharmacokinetic arm: AmB accumulation in skin after LAmB administration.  111 
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Figure 2 shows AmB accumulation (ng AmB per gram skin tissue; ng AmB per lesion) in infected and 112 

healthy control skin at different stages of murine L. major or L. mexicana CL (papule, initial nodule, 113 

established nodule) 24 hours after administration of a single dose of 25 mg/kg LAmB (IV). The 114 

morphology of the lesions is shown in figure 6 (panel a). Table 1 shows AmB lesion-to-healthy-skin-115 

ratios, the ratio of the AmB skin level in the lesion over the AmB skin levels in the healthy control skin 116 

(calculated from values in figure 2, row 1). The ratios indicate that there is a 3-fold decrease of 117 

intralesional AmB accumulation when LAmB is administered at late (established nodule) compared to 118 

early (papule) stages of both L. major and L. mexicana CL. Drug levels were higher in L. major than in 119 

L. mexicana lesions at all stages of disease. Disposition of AmB in the PL was significantly higher 120 

than in healthy skin (p<0.0001). In contrast, AmB accumulation in HL is not significantly different to 121 

that in healthy control skin (p=0.37) and is similar to the baseline levels in uninfected mice. Drug 122 

distribution patterns are highly comparable when AmB concentrations are expressed relative 123 

(normalized, ng/g) or absolute (ng/lesion). This indicates that the altered PK of LAmB at different 124 

stages of CL is not a consequence of bias introduced by change in tissue volume/weight over the 125 

course of infection.     126 

Skin pathophysiology arm: factors affecting the PK of LAmB.   127 

Lesion characterisation: size and parasite load. Figure 3 shows the lesion characteristics (top row: 128 

lesion size, bottom row: parasite load) at different stages of infection by L. major or L. mexicana CL 129 

(papule, initial nodule, established nodule). The morphology of the lesions can be seen in figure 6 130 

(panel a). L. major lesions increased in size at a more rapid pace than L. mexicana, with different 131 

parasite load dynamics over time. During the 20 days following infection with L. major, lesion size 132 

gradually increased from 0 to around 7 mm and parasite load remained stable from day 5. Following 133 

infection with L. mexicana, smaller lesions formed (up to 5 mm) and the parasite load gradually 134 

increased. The PL swelling of rump skin had a size comparable to CL lesions, but as expected, no 135 

parasites could be detected in this Leishmania-free type of skin inflammation. In contrast, the HL (day 136 

20, after 10-day treatment with paromomycin) had a lesion size of 0 ± 0 mm and parasite load was 137 

around a 100-fold lower than in the untreated L. major established nodules (day 20). As expected, 138 

neither lesion size nor parasite load was measurable in uninfected mice.   139 
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Evans Blue: leakiness of dermal capillaries. Figure 4 shows vascular permeability in infected and 140 

healthy control skin at different stages of murine L. major or L. mexicana CL (papule, initial nodule, 141 

established nodule), as evaluated by the Evans Blue Assay. The morphology of the lesions can be 142 

seen in figure 6 (panel a). Table 1 shows Evans Blue lesion-to-healthy-skin-ratios, the ratio of the 143 

Evans Blue skin level in the lesion over the Evans Blue skin levels in the healthy control skin 144 

(calculated from the values in figure 4). The ratios for L. major indicate that, compared to healthy 145 

control skin, vascular permeability is 6-fold higher in papules and 9-fold higher in initial nodules and 146 

established nodules. For L. mexicana, there is 3-10 fold increase in permeability compared to healthy 147 

skin and the increase is comparable at papular, nodular and established noduleative stages. Blood 148 

vessel leakiness was 12-fold higher (p<0.0001) in the PL than in healthy skin. In HL, vascular 149 

permeability is not significantly different to that in healthy control skin (p=0.99) and is similar to the 150 

baseline levels in uninfected mice. In the photos in figure 4, the intense blue coloration of lesions (due 151 

to accumulation of the dye Evans Blue) provides an additional, qualitative confirmation of capillary 152 

leakiness at the site of infection. Such a phenomenon in absent in healthy skin tissues.   153 

Skin histomorphometry: inflammatory cells and macrophages. Figure 5 shows the number of 154 

total cells (top row) and the abundance of macrophages (bottom row) in infected and healthy control 155 

skin at different stages of murine L. major or L. mexicana CL (papule, initial nodule, established 156 

nodule). Figure 6 shows the morphology of the lesions (panel a), the H&E stain (panel b) and the anti-157 

Iba-1 stain (panel c). Figure 7 examines the H&E and Iba-1 stains of CL lesions in more detail. Table 158 

1 shows total cell and macrophage lesion-to-healthy-skin-ratios, the ratio of the total cell and 159 

macrophage skin numbers in the lesion over the total cell and macrophage skin numbers in the 160 

healthy control skin (calculated from the values in figure 5). The ratios indicate that the number of 161 

cells in the tissue doubles in CL lesions as the disease progresses and a large fraction of the 162 

infiltrated inflammatory cells are macrophages. However, the number of inflammatory cells and 163 

macrophages in L. major lesions are higher than those in L. mexicana lesions at all stages of disease. 164 

In the PL, the number of inflammatory cells were significantly higher than in healthy skin (p=0.0034), 165 

but this was not the case for macrophages specifically (p>0.99). In the HL, the number of 166 

inflammatory cells and macrophages were not significantly different to that in healthy control skin 167 

(p>0.05) and are similar to the baseline levels in uninfected mice.  168 
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Relation between PK and pathophysiology parameters. Table 1 shows the lesion-over-healthy-169 

skin-ratios (parameter value in lesion / parameter value in healthy skin) for AmB accumulation (figure 170 

2 data, AmB levels in ng/g), blood vessel permeability (figure 4 data), number of cells and number of 171 

macrophages (figure 5 data). For uninfected mice, the ratios for AmB, blood vessel permeability, cell 172 

numbers and macrophage numbers were around 1, indicating no difference in the values for these 173 

parameters between the lesion site (rump skin) and the healthy site (back skin). Comparing 174 

Leishmania-infected mice to uninfected mice, AmB accumulation, blood vessel permeability, cell 175 

numbers and macrophage numbers were higher at all three stages of disease for both L. major and L. 176 

mexicana. However, these ratios were increased for L. major compared to L. mexicana. The higher 177 

ratios for PL compared to uninfected mice indicate increased drug accumulation as well as blood 178 

vessel leakiness, cell numbers and macrophages in this alterative type of skin inflammation.  For HL, 179 

however, all lesion-over-healthy ratios were highly similar to the baseline ratios found in healthy mice 180 

(except for macrophage number). Similar patterns at different stages of disease were found in L. 181 

major and L. mexicana-infected mice. A significant increase in ratios for drug accumulation, blood 182 

vessel permeability, cell numbers and macrophage numbers was found in papules (early CL) 183 

compared to uninfected mice. Comparing ratios for the papule compared to those for initial nodules 184 

and established nodules (later-stage CL), relatively little new, additional inflammatory cells and 185 

macrophages seemed to infiltrate the skin (for both L. major and L. mexicana) and blood vessel 186 

permeability remained stable (for L. major but not L. mexicana). 187 

Skin PK and efficacy of LAmB in CL. 188 

Finally, we evaluated the efficacy of LAmB against L. major and L. mexicana in the BALB/c mouse 189 

model of CL.  Figure 8 shows in vivo activity and intralesional AmB accumulation on day 10, after 190 

treatment of mice with initial nodules with 5 doses of 25 mg/kg LAmB (IV) on alternate days (i.e. on 191 

day 0, 2, 4, 6 and 8). LAmB showed in vivo activity against both CL-causing parasite species. 192 

However, reductions in lesion size and parasite load compared to untreated controls were greater and 193 

significant for L. major (p=0.011 and 0.0471) compared to L. mexicana (p=0.25 and 0.99). We also 194 

observed almost 2-fold higher AmB levels (ng/g) in L. major over L. mexicana lesions. In CL-infected 195 

skin, drug levels concentrations were at least 4-fold higher comparing to healthy rump skin of 196 

identically uninfected LAmB treated mice. However, this difference was significant for L. major 197 
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(p<0.0001) but not for L. mexicana (p=0.15). The L. major data has already been reported earlier (21), 198 

but is included to enable direct comparison with L. mexicana (novel data).    199 

 200 

DISCUSSION 201 

Local tissue inflammation in infectious disease can alter the pharmacokinetics (PK) and thus 202 

therapeutic outcomes of antimicrobials (41-43). In this work, we have confirmed our hypothesis that 203 

the inflamed state of skin lesions in CL alters the PK of liposomal amphotericin B (LAmB) following 204 

intravenous drug administration in two mouse models of infection. Our results show that AmB 205 

accumulation in CL-infected skin is (i) Leishmania species-specific (L. major > L. mexicana lesions) 206 

(ii) disease-stage-specific (papule > initial nodule > established nodule > healthy skin) and (iii) a 207 

plausible cause of the superior in vivo efficacy of LAmB against L. major compared to L. mexicana.   208 

Firstly, the preferential distribution of LAmB to CL infection sites (L. major > L. mexicana) compared to 209 

uninfected ones could be explained by the presence and the severity of the local inflammatory 210 

response against the parasites residing in dermal macrophages. Compared to L. mexicana, L. major 211 

causes more heavily inflamed (exudative) established nodules with a more rapid, aggressive onset in 212 

humans (12-15) and mice (3, 44). Several quantitative biomarkers for skin inflammation in our study 213 

confirmed this. Leakiness of the dermal capillaries, swelling/oedema in the skin tissue (indicated by 214 

lesion size) and numbers of infiltrating macrophages or other inflammatory cells were higher in L. 215 

major compared to L. mexicana CL, at all stages of disease. These findings are consistent with earlier 216 

reports (45-47). Moreover, the HL and PL observations support this inflammation-driven theory of 217 

enhanced drug accumulation. When the inflammation in L. major-infected skin is largely cleared 218 

because of parasite elimination by paromomycin treatment (HL), AmB accumulation, blood vessel 219 

permeability and cell numbers return to baseline levels seen in uninfected skin. However, when 220 

inflammation is experimentally induced by injection of λ- carrageenan (instead of parasites) in rump 221 

skin (similar site as in CL-infection), the local drug concentrations after LAmB administration also 222 

increase by over 3-fold. Such a phenomenon could be explained by a 10-fold increase in leakiness of 223 

the skin capillaries. The new PL model of local skin inflammation, based on subcutaneous injection of 224 

λ-carrageenan, could be a useful research tool for dermatoses other than CL, such as skin cancers, 225 

atopic dermatitis or psoriasis (48). 226 
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Secondly, the increased intralesional AmB accumulation after intravenous LAmB dosing of mice with 227 

CL in earlier stages of disease (papule > initial nodule > established nodule) could be related to 228 

changes in infiltration of phagocytes prone to internalize circulating liposomes and, likely to lesser 229 

degree, capillary leakiness in the dermis. When LAmB is administered to mice with early CL, during 230 

the initial massive influx of phagocytes and inflammatory cells into the skin as part of the 231 

antileishmanial immune response (4, 11), intralesional drug levels could be increased as AmB-loaded 232 

cells migrate from the blood stream to the infection site. Hence, in later stages of disease, when the 233 

number of additional macrophages infiltrating the infected tissue is more limited, skin AmB 234 

accumulation could be lower. The known role of phagocyte transport in the delivery of various 235 

antibiotics (30-32), including liposomal AmB (41), to local infection sites, as well as our PK and 236 

histology data suggests the plausibility of this hypothesis. Confirmative research should distinguish 237 

extra- and intracellular levels in circulating and dermal macrophages after LAmB administration. While 238 

phagocytes can increase AmB exposure in the lesion, their therapeutic relevance is still unclear. 239 

Cellular lysis, resulting in local release of the drug payload, or impaired parasite survival in these 240 

‘pretreated’ macrophages could play a role. Another pathophysiological factor affecting the PK of 241 

LAmB is blood vessel leakiness, a result of vasodilatation and enhanced vascular permeability in the 242 

inflamed dermis. Here, we confirmed the existence of this phenomenon in experimental CL for the 243 

first time. It could facilitate extravasation of the liposomes (~ 80 nm in size) through the dermal 244 

capillaries, which under normal physiological conditions have a pore cut-off size of 6-12 nm (21). 245 

However, it cannot explain a decrease in AmB disposition in lesions as CL progresses by itself, 246 

because we found comparable degrees of capillary leakage similar in papules, initial nodules and 247 

established nodules. Other factors that could affect cellular and dermal PK, such as plasma and 248 

tissue protein-binding (49), angiogenesis (50), lymphatic drainage, phagocytic capacity and activation 249 

stage of (parasitized) macrophages (33), skin metabolism, clearance by the reticuloendothelial 250 

system (51), or the involvement of (non-macrophage) immune cells, mediators or responses, were not 251 

evaluated in this study. A similar trend of decreasing drug distribution of LAmB to target organs during 252 

later disease stages was also found in murine VL (33). However, interestingly, Leishmania-infected 253 

livers contain lower rather than higher drug levels compared to healthy ones. 254 

Thirdly, the in vivo activity of LAmB was superior against L. major compared to L. mexicana, likely due 255 

to inflammation-enhanced and relatively increased drug levels at the infection site. A clear correlation 256 
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between drug levels of the leishmanicidal, concentration-dependent antibiotic AmB delivered to the 257 

lesion and the efficacy of LAmB in murine CL has already been reported (21, 52). Apart from skin PK, 258 

there could be also be differences in antileishmanial pharmacodynamics (PD) and the resulting 259 

PK/PD relationship. An intrinsic species-specific sensitivity to the active compound AmB is unlikely, as 260 

in vitro EC50 values are comparable (≈ 0.1 µM) (35). However, the in vivo susceptibility could still vary 261 

based on the metabolic state of the L. major or L. mexicana parasites in the skin. In chronic lesions 262 

with slow disease onset, a quiescent, semi-dormant phenotype of L. mexicana could exist, benefitting 263 

its long-term survival and possibly showing reduced drug sensitivity (53-55). Such PK/PD factors 264 

could cause variable rate or magnitude of parasite elimination, a combined outcome of drug activity 265 

and host immunity. Pharmacogenetic differences between individual patients and populations 266 

(affecting distribution, metabolism and clearance) might also contribute to additional variation in LAmB 267 

efficacy in the clinic (20).  268 

Finally, although BALB/c mice are common in PK studies (56) and  L. major-BALB/c is a highly 269 

reproducible and well-established model for antileishmanial drug evaluation (57), differences between 270 

CL in humans (mostly self-curing lesions) and BALB/c mice (non-healing lesions) (58) should be 271 

considered. Our studies used mice with relatively small (< 1 cm), local and uncomplicated CL lesions. 272 

Despite variation in the immunological nature of the skin inflammation, the phenomena of capillary 273 

leakiness, oedema formation and phagocyte infiltration occur in both mice and humans (59, 60). 274 

Thus, our findings could hold treatment implications for CL as well as for other inflammatory (skin) 275 

disorders. During preclinical evaluation of novel nanoparticles, a drug delivery strategy used for CL 276 

(61), the time of drug administration (relative to disease stage) and causative species are important 277 

factors that can affect both PK and PD. In the clinic, LAmB treatment outcomes in CL are already 278 

known to relate to the causative Leishmania species. A recent observational study in a group of 279 

travellers with (M)CL (20) reported differences in the therapeutic success rate of LAmB against L. 280 

infantum (78%), L. major (50%) and Leishmania Viannia subgenus species (28%). However, because 281 

L. mexicana was not included in this work, we can not directly compare our results in mice to those in 282 

humans. In addition, early diagnosis and therapeutic intervention with LAmB could produce enhanced 283 

drug exposure in the skin lesion. No present clinical studies have reported on this. In contrast, early 284 

treatment of L. brasiliensis CL with intramuscular pentavalent antimonials was associated with a 5-285 

fold increased risk of treatment failure (62, 63). Both the impact of parasite species and the age of the 286 
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lesion in CL on PK and therapeutic efficacy of LAmB (and other antileishmanial drugs) deserve further 287 

investigation. Laboratory experiments could investigate outcomes of multi-dose treatments in 288 

alternative models of disease caused by additional Leishmania species and strains. Extrapolation of 289 

LCL results to the various types of complex CL is complicated by differences in histopathology (blood 290 

vessel destruction in advanced MCL (10)) and the nature and severity of the inflammatory response 291 

(balance TH1/TH2-type cellular immunity in local versus diffuse CL (3, 4)). Overall, it is clear that the 292 

immunohistopathology of CL has a profound impact on drug disposition of antileishmanial agents, 293 

both when administered topically (increased permeation through the damaged epidermis (64, 65)) 294 

and systemically (enhanced extravasation for liposomal and non-encapsulated drugs (21)).  295 

In conclusion, our data indicates that the severity of inflammatory skin disease in CL could contribute 296 

to variable drug penetration in the target tissue and therapeutic efficacy of LAmB. The significant 297 

impact of local inflammation on PK and PK/PD is not only an important consideration for the 298 

development of new drugs and clinical dose regimens for the treatment of CL, but also for other 299 

(infectious) diseases with an inflammatory component.  300 

 301 

MATERIALS AND METHODS 302 

Parasites, media and drugs. L. major MHOM/SA85/JISH118 and L. mexicana MNYC/BZ/62/M379 303 

parasites were cultured in Schneider’s insect medium (Sigma, UK) supplemented with 10% heat-304 

inactivated fetal calf serum (HiFCS, Sigma UK). These were passaged each week at a 1:10 ratio of 305 

existing culture to fresh media in 25 ml culture flasks without filter and incubated at 26 °C. For 306 

infection of mice, stationary phase parasites were centrifuged for 10 minutes at 2100 rpm and 4 °C. 307 

The supernatant was removed and the pellet re-suspended in RPMI medium (Sigma, UK). Cell 308 

number was estimated by microscopic counting with a Neubauer haemocytometer. AmBisome® 309 

(LAmB, Gilead, UK) was reconstituted with 12 ml sterile water (as per the manufacturer’s instructions) 310 

to yield a stock solution of 4 mg/ml and diluted in 5% aqueous dextrose to achieve a drug dose of 25 311 

mg/kg. Paromomycin sulphate (Sigma, UK) was prepared in phosphate buffered saline (PBS) to yield 312 

50 mg/kg doses. λ-carrageenan (Sigma, UK) and Evans Blue (Sigma UK) 0.5 % (w/v) solutions were 313 

made up in phosphate buffered saline (PBS, Sigma, UK). Drug preparations were stored at 4 °C 314 

during the experiments. 315 
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Experimental groups. Female BALB/c mice around 6-8 weeks old and a mean weight of 18-20 g 316 

were purchased from Charles River Ltd (Margate, UK). These were kept in humidity and temperature 317 

controlled rooms (55-65%, 25-26 °C) and fed water and rodent food ad libitum. Mice were randomized 318 

and allowed an acclimatization time of one week. All animal experiments were conducted under 319 

license 70/8427 according to UK Home Office regulations under the Animals (Scientific Procedures) 320 

Act 1986 and EC Directive 2010/63/E. An overview of the groups is shown in figure 1.  321 

1. L. major CL. Mice were subcutaneously (SC) infected in the shaven rump above the tail with 322 

200 µl parasite suspension containing 4 x 107 of low passage number (P<5), stationary phase 323 

L. major  promastigotes in RPMI medium. Lesion size was measured daily with digital 324 

callipers (average of length and width) after inoculation as the CL lesions developed into 325 

papules, initial nodules and established nodules. In this animal model of CL, these respective 326 

disease stages occurred on day 5, 10 and 20, as shown previously (40). We define a ‘CL 327 

lesion’ as a stationary, local skin abnormality at the site of Leishmania parasite inoculation 328 

(rump). A ‘papule’ is the smallest (2-4 mm) CL lesion, a palpable elevation of the skin with no 329 

signs of ulceration. An ‘initial nodule’ is a medium-sized (4-6 mm) papule that is larger and 330 

more defined. An ‘established nodule’ is a larger (5-8 mm) CL lesion that is crusted or 331 

exudative.   332 

2. L. mexicana CL. Mice were infected as described above for L. major, but L. mexicana 333 

promastigotes were used. In this animal model of CL, the disease stages of papule, initial 334 

nodule and established nodule occurred on days 15, 30 and 45 post-inoculation (40). The 335 

earlier definitions of ‘CL lesion’, ‘papule’, ‘initial nodule’ and ‘established nodule’ apply.  336 

3. Skin inflammation controls. For the uninfected controls, mice were infected in the shaven 337 

rump above the tail with 200 µl parasite-free RPMI medium (SC). For the ‘healed lesion’ (HL) 338 

controls, mice with L. major initial nodules (10 days post-inoculation, infection as described 339 

above) were treated daily for 10 days with 50 mg/kg paromomycin sulphate in PBS (200 µl via 340 

the intraperitoneal (IP) route). This regimen has proven efficacy in the L. major-BALB/c model 341 

of CL (40). A size of 0 mm (complete disappearance of the skin lesion) was considered a 342 

near-complete healing and a negative control for skin inflammation. For the ‘pseudolesion’ 343 

(PL) control, mice were SC injected in the shaven rump above the tail with 25 µl 0.5 % λ-344 

carrageenan in PBS. After 24 hours, when a measurable lesion-like but parasite-free swelling 345 
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of skin had occurred, the pseudolesion was considered a positive control for skin 346 

inflammation. These specific concentration and time points were chosen based on similarity 347 

to CL-lesions and experimental requirements. The resulting diameter of the skin swelling 348 

(“lesion size”) was between 2-8 mm (the size of our CL lesions). Moreover, the local 349 

inflammation remained for at least 48 hours (24 hours to reach maximal swelling and another 350 

24 hours for PK experiment). This novel carrageenan-induced model of local rump skin 351 

inflammation in mice was based on the well-established model of rat paw inflammation (38, 352 

39) and preparatory studies are shown in Supplement 1. 353 

Procedures per experimental group. Ten mice per group (L. major papule, L. major initial nodule 354 

and L. major established nodule; L. mexicana papule, L. mexicana initial nodule and L. mexicana 355 

established nodule; uninfected, pseudolesion and healed lesion) were divided in a pharmacokinetic 356 

(n=5) and skin pathophysiology arm (n=5). This allowed simultaneous studying of drug accumulation 357 

24 hours after LAmB administration (this time point results in maximal AmB accumulation in skin(21)) 358 

and pathophysiology factors affecting pharmacokinetics at the time of drug administration (30 minutes 359 

after administration of Evans Blue, standard time for preferential distribution of the dye to inflamed 360 

compared to healthy peripheral tissue sites (35-37)). An overview of the procedures performed per 361 

group is shown in figure 1.  362 

• Pharmacokinetic arm. Each animal in this arm (n=5) received an IV bolus (200 µl) of LAmB 363 

at a dose level of 25 mg/kg. Twenty-four hours later, animals were sacrificed and skin 364 

samples (from lesion and healthy control site) were collected. The skin samples were 365 

homogenised and AmB levels in tissues measured as previously described (21, 33). Briefly, 366 

skin tissues were ground mechanically with zirconium oxide beads in 1 ml of PBS. The drug 367 

(AmB) was then extracted from tissue homogenates with 84:16 methanol:DMSO, followed by 368 

LC-MS/MS quantification. When the expression ‘AmB levels’ or ‘AmB concentrations’ is used 369 

in this work without further clarification, it refers to total (liposomal + protein-bound + ‘free’) 370 

amount of AmB per gram of tissue. Pharmidex Pharmaceutical Services Ltd. performed LC-371 

MS/MS analysis of the samples. The lower limit of quantification was 1 ng/ml.  372 

• Skin pathophysiology arm. Each animal in this arm (n=5) received an intravenous bolus 373 

(200 µl) of 0.5 % Evans Blue (Sigma, UK). Lesion size (average of width and length, mm) was 374 

measured with digital callipers. Thirty minutes later, animals were sacrificed and skin samples 375 
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(from the lesion and the healthy control site) were collected. These samples were cut into 376 

three equal parts, weighed and used for the following evaluations:    377 

1. Capillary leakiness. The first skin fragment was used to evaluate blood vessel leakiness 378 

with the Evans Blue assay. Evans Blue is a blue dye, which is, under normal 379 

physiological conditions, predominantly restricted to the blood stream because of high 380 

plasma protein binding. However, the protein-dye complex can extravasate at sites of 381 

increased vessel leakiness, as is the case in local inflammation. Hence, the amount of 382 

Evans Blue per gram of tissue is a marker for local vascular permeability (35-37). To 383 

extract Evans Blue from skin, tissue sections were placed in 500 µl formamide in 384 

Eppendorf tubes and incubated in a 55 °C water bath. After 24 hours, tubes were 385 

centrifuged for 10 minutes at 15000 rpm at 4 °C and supernatants were collected. 386 

Absorbance (maximum 620 nm, minimum 740 nm) was determined with a Spectramax 387 

M3 plate reader (Molecular Devices, UK). Samples, blanks (formamide) and calibration 388 

standards (1:2 serial dilution of 100 µg/ml Evans Blue in formamide) were measured in 389 

96-well plates (200 µl volumes). After correction against the blank, the amount of Evans 390 

Blue in samples was expressed per gram of skin tissue. 391 

2. Parasite load. The second skin tissue fragment was used to evaluate L. major and L. 392 

mexicana parasite loads with DNA-based quantitative PCR, as described previously (40). 393 

In brief, skin tissue was homogenised and DNA extracted with a Qiagen DNAeasy® kit for 394 

blood and tissue. Two µl DNA extract samples (1/100 diluted) were amplified in 10 µl 395 

reactions in the presence of 5 µl SensiFAST SYBR® NO-ROX master mix, 0.25 µM 396 

probe and 0.4 µM primers. Triplicates of standards (108 to 102) and duplicates of 397 

unknown samples were included. The tubes were placed in a 72 sample rotor of the 398 

RotorGene 3000, set at 40 cycles at a denaturation setting of 95 °C for 5 minutes 399 

followed by a 2-step amplification cycle of 95 °C for 10 seconds and 60 °C for 30 400 

seconds. The lower limit of quantification was 100 parasites per 2µl.    401 

3. Skin histomorphometry. The third and final skin fragment was fixed in formalin for 24 402 

hours, dehydrated in ethanol, cleared in xylene and embedded in paraffin. Skin samples 403 

were stained with haematoxylin and eosin (H&E) or antibodies against the 404 

macrophage/microglia-specific protein iba-1 (anti-Iba 1). All histological procedures were 405 

 on A
ugust 15, 2018 by LO

N
D

O
N

 S
C

H
O

O
L O

F
 H

Y
G

IE
N

E
 &

 T
R

O
P

IC
A

L M
E

D
IC

IN
E

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


performed at the Institute of Neurology (UCL, London, UK) and blind analysis using the 406 

same analyst was conducted at LSHTM. Leica ST5020 Autostainer was used for H&E 407 

stain, according to the standard NHS diagnostic protocol. Randomly selected images 408 

covering skin regions were acquired with a camera (Leica DFC295) attached to a Leica 409 

DM3000 LED microscope. Images were digitalized for histomorphometric analysis using 410 

the Leica Application Suite V4.5 software. An index of inflammatory cells was assessed 411 

by quantifying a standardized test area of 166970.7 µm2 per image acquired, with 20x 412 

objective. The number of cells/image was determined from the average of 6 413 

images/animal, randomly chosen, at 200x magnification, stained with H&E. An increase in 414 

the number of cells compared with uninfected controls was considered indicative of 415 

inflammation. Immunohistochemistry reaction for macrophage presence was performed 416 

using the Ventana Discovery XT using the Ventana DAB Map detection Kit. Tissues were 417 

pre-treated for 40 minutes with EDTA buffer, incubated for 4 hours with the primary 418 

antibody (anti-Iba-1, 1/250 dilution, Wako Laboratory Chemicals, Germany) and treated 419 

with Swine anti Rabbit Dako E0353 for 1 hour (manufacturers protocol). The polyclonal 420 

antibodies in the anti-Iba-1 stain label the calcium-binding protein iba-1, specific to 421 

microglia (central nervous system) and macrophages (skin and other tissues). An index of 422 

macrophage was assessed by quantifying a standardized test area of 166970.7 µm2 per 423 

image, acquired with 20 x objective. The area in brown was determined from an average 424 

of 6 randomly chosen images/animal, at 200x magnification. Increased stained area 425 

compared with uninfected controls was considered indicative of macrophage infiltration. 426 

Efficacy of LAmB against L. major and L. mexicana. Uninfected or Leishmania-infected BALB/c 427 

mice with nodular CL lesions (10 and 30 days post-inoculation for L. major and L. mexicana, 428 

respectively) received five doses (200 µl, IV) of either 5% dextrose (untreated control) or LAmB at 25 429 

mg/kg (treated) on alternate days (i.e. on day 0, 2, 4, 6, 8). During treatment, lesion size was 430 

monitored daily. On day 10, animals were sacrificed, lesion samples were collected and parasite load 431 

and AmB drug levels in these tissues quantified (see above).  432 

Statistical analysis. For the PK and pathophysiology experiments, intralesional AmB accumulation, 433 

lesion size, parasite load, capillary leakiness, cell number and macrophage abundance were 434 

compared in infected and uninfected skin of the same mice using a 2-way ANOVA followed by Sidak 435 
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multiple comparison test. For the efficacy experiment, ANOVA (1-way for parasite load and 436 

intralesional AmB levels, 2-way repeated measures for lesion size) followed by Tukey’s multiple 437 

comparison test was used. Data is presented as mean and standard error of the mean (SEM). A p-438 

value < 0.05 was considered statistically significant. All analyses were performed with GraphPad 439 

Prism version 7.02. 440 

 441 

TABLES 442 

Table 1: Lesion-over-healthy-skin-ratios, based on the values found in lesions (rump) and healthy 443 

control skin (back) for the following of the variables: AmB accumulation, blood vessel permeability, 444 

total number of cells, and number of macrophages. Data derived from figures 2, 4 and 5.  445 

 446 

 447 

FIGURES 448 

Figure 1: Schematic overview of experimental design to study the influence of skin inflammation in 449 

CL on the PK of LAmB.   450 

 
L. major CL L. mexicana CL Controls 
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Figure 2: Skin accumulation of amphotericin B (AmB), 24 hours after a single intravenous (IV) 451 

administration of 25 mg/kg AmBisome (LAmB) to CL-infected mice at different time points post-452 

infection and controls. Drug levels were determined in the lesion (●) and healthy control skin (○) site 453 

for each animal. CL-infected mice with skin lesions were dosed with LAmB at the time when a papule, 454 

an initial nodule or an established nodule was present on the rump (respectively: 5, 10 and 20 days 455 

after L. major infection; 15, 30 and 45 days after L. mexicana infection). Controls for skin 456 

inflammation: uninfected mice (uninf), pseudolesion PL (mice with carrageenan-induced inflammatory 457 

skin initial nodule) and healed lesion HL (mice with paromomycin-cured L. major initial nodule). Data: 458 

means ± SEM (n=3-5 per group). Statistical analysis: 2-way ANOVA followed by Sidak multiple 459 

comparison test. *= p<0.05, **= p <0.01, ***= p<0.001, ****= p<0.0001.   460 

Figure 3: Lesion size (top row) and parasite load (bottom row) in to CL-infected mice at different time 461 

points post-infection and controls. Lesion size (mm) and parasite load (parasites per gram skin) were 462 

determined in the lesion (●) and healthy control skin (○) for each animal. CL-infected mice with skin 463 

lesions were measured at the time when a papule, an initial nodule or an established nodule was 464 

present on the rump (respectively: 5, 10 and 20 days after L. major infection; 15, 30 and 45 days after 465 

L. mexicana infection).  Controls for skin inflammation: uninfected mice (uninf), pseudolesion PL (mice 466 

with carrageenan-induced inflammatory skin initial nodule) and healed lesion HL (mice with 467 

paromomycin-cured L. major initial nodule). Data: means ± SEM (n=3-5 per group). Statistical 468 

analysis: 2-way ANOVA followed by Sidak multiple comparison test. *= p<0.05, **= p <0.01, ***= 469 

p<0.001, ****= p<0.0001.   470 

Figure 4: Leakiness of the bloods vessels in the skin of CL-infected mice at different time points post-471 

infection and controls. After administration of Evans Blue (200 µl 0.5%, IV), the amount of the blue 472 

dye per gram of tissue was determined in the lesion (●) and healthy control skin (○) for all animals. 473 

CL-infected mice with skin lesions were dosed with Evans Blue at the time when a papule, an initial 474 

nodule or an established nodule was present on the rump (respectively: 5, 10 and 20 days after L. 475 

major infection; 15, 30 and 45 days after L. mexicana infection). Controls for skin inflammation: 476 

uninfected mice (uninf), pseudolesion PL (mice with carrageenan-induced inflammatory skin initial 477 

nodule) and healed lesion HL (mice with paromomycin-cured L. major initial nodule). Data: means ± 478 

SEM (n=3-5 per group). Statistical analysis: 2-way ANOVA followed by Sidak multiple comparison 479 

 on A
ugust 15, 2018 by LO

N
D

O
N

 S
C

H
O

O
L O

F
 H

Y
G

IE
N

E
 &

 T
R

O
P

IC
A

L M
E

D
IC

IN
E

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


test. *= p<0.05, **= p <0.01, ***= p<0.001, ****= p<0.0001. The picture shows L. major-infected mice 480 

(day 10) after 30 minutes after administration of Evans Blue (IV). The arrows point at the blue 481 

coloration of the CL lesions (before skin sample collection, left photo) as well as intense blue staining 482 

of the underlying thoracolumbar fascia (after skin sample collection, right photo).  483 

Figure 5: Estimation of the number of cells (top row, H&E stain) and macrophages (bottom row, anti 484 

Iba-1-reaction) at the infected lesion site (rump skin, black bars) and the control site (back skin, white 485 

bars) of control mice and CL-infected mice. Measurements in CL-infected mice with skin lesions were 486 

performed at the time when a papule, an initial nodule or an established nodule was present on the 487 

rump (respectively: 5, 10 and 20 days after L. major infection; 15, 30 and 45 days after L. mexicana 488 

infection). Controls for skin inflammation: uninfected mice (uninf), pseudolesion PL (mice with 489 

carrageenan-induced inflammatory skin initial nodule) and healed lesion HL (mice with paromomycin-490 

cured L. major initial nodule). Standard surface: picture area showing full skin tissue (epidermis, 491 

dermis and hypodermis) to allow direct comparisons among groups (166970.7 µm2). Data: means ± 492 

SEM (n=3-5 per group). Statistical analysis: 2-way ANOVA followed by Sidak multiple comparison 493 

test. *= p<0.05, **= p <0.01, ***= p<0.001, ****= p<0.0001.   494 

Figure 6: Collage panels of murine skin lesions developed during CL disease progress and controls 495 

for skin inflammation. Per panel: photo of the lesion on the rump of the mice (a, white arrow points at 496 

lesion), haematoxylin and eosin stain (b, purple arrow points at a cluster of inflammatory cells) and 497 

macrophage marker anti-ionized calcium binding adapter molecule 1-antibody stain (c, brown arrow 498 

points at a cluster of macrophages). Top row: controls for skin inflammation (uninfected, pseudolesion 499 

and healed lesion). Middle row: L. major CL lesions (papule present 5 days post-infection, initial 500 

nodule present 10 days post-infection and an established nodule present 20 days post-infection). 501 

Bottom row: L. mexicana CL lesions (papule present 15 days post-infection, initial nodule present 30 502 

days post-infection and an established nodule present 45 days post-infection). Black bar in (b) = 100 503 

µm. 504 

Figure 7: Comparison of mouse skin morphology and macrophage density in healthy, uninfected skin 505 

(left), L. major CL lesion (20 days post-infection, middle) and L. mexicana CL lesion (45 days post-506 

infection, right). The central picture in each panel (H&E stain) shows the structural layers of the skin: 507 

epidermis (E), dermis (D) and hypodermis (H), with the underlying muscle (M) at x 4 magnification 508 
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(bar = 100 µm). The inserts (1-4) highlight details of the central picture (x 80 magnification, bar =10 509 

µm).  ①: epidermis. ②: dermal capillaries. ③: Leishmania amastigotes within parasitophorous 510 

vacuoles. ④: anti-iba-1 stain (macrophage marker) of tissue shown in insert ③. In both the L. major 511 

and L. mexicana CL lesion, intense inflammatory foci (I) are present in the skin, causing severe 512 

disruption the D and H architecture. Compared to healthy, uninfected skin, CL lesions also showed (i) 513 

epidermal hyperplasia and acanthosis for L. mexicana but not for L. major (①), (ii) dilated blood 514 

vessels, a factor contributing to capillary leakiness (②) and (iii) a large amount of inflammatory cells 515 

(③), many of which are macrophages (④).  516 

Figure 8: Efficacy and biodistribution of liposomal amphotericin B LAmB) in murine models L. major 517 

and L. mexicana CL. Mice were injected (SC) with parasite-free medium (uninfected) or infected with 518 

L. major or L. mexicana promastigotes in the rump skin. When a nodular lesion had formed at the 519 

inoculation site of CL-infected animals (10 and 30 days post-inoculation for L. major and L. mexicana, 520 

respectively), animals received either 5% dextrose (untreated) or 25 mg/kg LAmB (IV) on days 0, 2, 4, 521 

6 and 8. During treatment, lesion size (a) was measured daily. On day 10, lesion skin tissues were 522 

collected and parasite load (b) and AmB levels (c) determined. Each point represents mean ± SEM 523 

(n=3-5 per group). ANOVA (1-way for parasite load and intralesional AmB levels, repeated measures 524 

for lesion size), followed by Tukey’s multiple comparison test (* = p<0.05, **** =p<0.0001, ns = not 525 

significant). N/A: not applicable.  526 
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