7 research outputs found

    Examination of Factors Affecting the Likelihood of Whether Individuals Would Purchase Cartilage Conduction Hearing Aids

    No full text
    Cartilage conduction hearing aids (CC-HAs) are a novel type of hearing aid relying on cartilage conduction, the so-called third auditory conduction pathway. However, CC-HAs have only recently entered routine clinical use, and therefore data on their usefulness are lacking. The purpose of this study was to examine the possibility of assessing whether individual patients would show good adaptation to CC-HAs. Thirty-three subjects (41 ears in total) underwent a free trial of CC-HAs. Age, disease category, and the pure-tone threshold of air and bone conduction, unaided field sound threshold, aided field sound threshold, and functional gain (FG) at 0.25, 0.5, 1, 2, and 4 kHz were compared between patients who subsequently purchased and did not purchase the CC-HAs. Overall, 65.9% of the subjects purchased CC-HAs after the trial. In comparison to non-purchasers, those who decided to purchase CC-HAs showed better pure tone hearing thresholds at high frequencies for both air conduction (2 and 4 kHz) and bone conduction (1, 2, and 4 kHz), as well as for aided thresholds in the sound field (1, 2, and 4 kHz) when using CC-HAs. Therefore, the high-frequency hearing thresholds of subjects trialing CC-HAs might be helpful for identifying those who are likely to benefit from them

    Combined Pre-Supernova Alert System with Kamland and Super-Kamiokande

    No full text
    International audiencePreceding a core-collapse supernova, various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande via inverse beta decay interactions. Once these pre-supernova neutrinos are observed, an early warning of the upcoming core-collapse supernova can be provided. In light of this, KamLAND and Super-Kamiokande have been monitoring pre-supernova neutrinos since 2015 and 2021, respectively. Recently, we performed a joint study between KamLAND and Super-Kamiokande on pre-supernova neutrino detection. A pre-supernova alert system combining the KamLAND detector and the Super-Kamiokande detector is developed and put into operation, which can provide a supernova alert to the astrophysics community. Fully leveraging the complementary properties of these two detectors, the combined alert is expected to resolve a pre-supernova neutrino signal from a 15 M_{\odot} star within 510 pc of the Earth, at a significance level corresponding to a false alarm rate of no more than 1 per century. For a Betelgeuse-like model with optimistic parameters, it can provide early warnings up to 12 hours in advance

    Combined Pre-Supernova Alert System with Kamland and Super-Kamiokande

    No full text
    International audiencePreceding a core-collapse supernova, various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande via inverse beta decay interactions. Once these pre-supernova neutrinos are observed, an early warning of the upcoming core-collapse supernova can be provided. In light of this, KamLAND and Super-Kamiokande have been monitoring pre-supernova neutrinos since 2015 and 2021, respectively. Recently, we performed a joint study between KamLAND and Super-Kamiokande on pre-supernova neutrino detection. A pre-supernova alert system combining the KamLAND detector and the Super-Kamiokande detector is developed and put into operation, which can provide a supernova alert to the astrophysics community. Fully leveraging the complementary properties of these two detectors, the combined alert is expected to resolve a pre-supernova neutrino signal from a 15 M_{\odot} star within 510 pc of the Earth, at a significance level corresponding to a false alarm rate of no more than 1 per century. For a Betelgeuse-like model with optimistic parameters, it can provide early warnings up to 12 hours in advance
    corecore