297 research outputs found

    The Ginzburg-Landau theory in application

    Full text link
    A numerical approach to Ginzburg-Landau (GL) theory is demonstrated and we review its applications to several examples of current interest in the research on superconductivity. This analysis also shows the applicability of the two-dimensional approach to thin superconductors and the re-defined effective GL parameter kappa. For two-gap superconductors, the conveniently written GL equations directly show that the magnetic behavior of the sample depends not just on the GL parameter of two bands, but also on the ratio of respective coherence lengths.Comment: To be published in Physica C, VORTEX VI Conference Proceeding

    Adiabatic theorems for generators of contracting evolutions

    Full text link
    We develop an adiabatic theory for generators of contracting evolution on Banach spaces. This provides a uniform framework for a host of adiabatic theorems ranging from unitary quantum evolutions through quantum evolutions of open systems generated by Lindbladians all the way to classically driven stochastic systems. In all these cases the adiabatic evolution approximates, to lowest order, the natural notion of parallel transport in the manifold of instantaneous stationary states. The dynamics in the manifold of instantaneous stationary states and transversal to it have distinct characteristics: The former is irreversible and the latter is transient in a sense that we explain. Both the gapped and gapless cases are considered. Some applications are discussed.Comment: 31 pages, 4 figures, replaced by the version accepted for publication in CM

    General Adiabatic Evolution with a Gap Condition

    Full text link
    We consider the adiabatic regime of two parameters evolution semigroups generated by linear operators that are analytic in time and satisfy the following gap condition for all times: the spectrum of the generator consists in finitely many isolated eigenvalues of finite algebraic multiplicity, away from the rest of the spectrum. The restriction of the generator to the spectral subspace corresponding to the distinguished eigenvalues is not assumed to be diagonalizable. The presence of eigenilpotents in the spectral decomposition of the generator forbids the evolution to follow the instantaneous eigenprojectors of the generator in the adiabatic limit. Making use of superadiabatic renormalization, we construct a different set of time-dependent projectors, close to the instantaneous eigeprojectors of the generator in the adiabatic limit, and an approximation of the evolution semigroup which intertwines exactly between the values of these projectors at the initial and final times. Hence, the evolution semigroup follows the constructed set of projectors in the adiabatic regime, modulo error terms we control

    Global well-posedness for the KP-I equation on the background of a non localized solution

    Full text link
    We prove that the Cauchy problem for the KP-I equation is globally well-posed for initial data which are localized perturbations (of arbitrary size) of a non-localized (i.e. not decaying in all directions) traveling wave solution (e.g. the KdV line solitary wave or the Zaitsev solitary waves which are localized in xx and yy periodic or conversely)

    Adiabatic response for Lindblad dynamics

    Full text link
    We study the adiabatic response of open systems governed by Lindblad evolutions. In such systems, there is an ambiguity in the assignment of observables to fluxes (rates) such as velocities and currents. For the appropriate notion of flux, the formulas for the transport coefficients are simple and explicit and are governed by the parallel transport on the manifold of instantaneous stationary states. Among our results we show that the response coefficients of open systems, whose stationary states are projections, is given by the adiabatic curvature.Comment: 33 pages, 4 figures, accepted versio

    Superconducting Wigner Vortex Molecule near a Magnetic Disk

    Full text link
    Within the non-linear Ginzburg-Landau (GL) theory, we investigate the vortex structure in a superconducting thin film with a ferromagnetic disk on top of it. Antivortices are stabilized in shells around a central core of vortices (or a giant-vortex) with size-magnetization controlled ``magic numbers''. An equilibrium vortex phase diagram is constructed. The transition between the different vortex phases occurs through the creation of a vortex-antivortex pair under the magnetic disk edge.Comment: 4 pages, 4 figures. Submitted to Phys. Rev. Let

    Surprises in the Orbital Magnetic Moment and g-Factor of the Dynamic Jahn-Teller Ion C_{60}^-

    Full text link
    We calculate the magnetic susceptibility and g-factor of the isolated C_{60}^- ion at zero temperature, with a proper treatment of the dynamical Jahn-Teller effect, and of the associated orbital angular momentum, Ham-reduced gyromagnetic ratio, and molecular spin-orbit coupling. A number of surprises emerge. First, the predicted molecular spin-orbit splitting is two orders of magnitude smaller than in the bare carbon atom, due to the large radius of curvature of the molecule. Second, this reduced spin-orbit splitting is comparable to Zeeman energies, for instance, in X-band EPR at 3.39KGauss, and a field dependence of the g-factor is predicted. Third, the orbital gyromagnetic factor is strongly reduced by vibron coupling, and so therefore are the effective weak-field g-factors of all low-lying states. In particular, the ground-state doublet of C_{60}^- is predicted to show a negative g-factor of \sim -0.1.Comment: 19 pages RevTex, 2 postscript figures include

    Correlations Between Charge Ordering and Local Magnetic Fields in Overdoped YBa2_2Cu3_3O6+x_{6+x}

    Full text link
    Zero-field muon spin relaxation (ZF-μ\muSR) measurements were undertaken on under- and overdoped samples of superconducting YBa2_2Cu3_3O6+x_{6+x} to determine the origin of the weak static magnetism recently reported in this system. The temperature dependence of the muon spin relaxation rate in overdoped crystals displays an unusual behavior in the superconducting state. A comparison to the results of NQR and lattice structure experiments on highly doped samples provides compelling evidence for strong coupling of charge, spin and structural inhomogeneities.Comment: 4 pages, 4 figures, new data, new figures and modified tex

    Pairing and Density Correlations of Stripe Electrons in a Two-Dimensional Antiferromagnet

    Full text link
    We study a one-dimensional electron liquid embedded in a 2D antiferromagnetic insulator, and coupled to it via a weak antiferromagnetic spin exchange interaction. We argue that this model may qualitatively capture the physics of a single charge stripe in the cuprates on length- and time scales shorter than those set by its fluctuation dynamics. Using a local mean-field approach we identify the low-energy effective theory that describes the electronic spin sector of the stripe as that of a sine-Gordon model. We determine its phases via a perturbative renormalization group analysis. For realistic values of the model parameters we obtain a phase characterized by enhanced spin density and composite charge density wave correlations, coexisting with subleading triplet and composite singlet pairing correlations. This result is shown to be independent of the spatial orientation of the stripe on the square lattice. Slow transverse fluctuations of the stripes tend to suppress the density correlations, thus promoting the pairing instabilities. The largest amplitudes for the composite instabilities appear when the stripe forms an antiphase domain wall in the antiferromagnet. For twisted spin alignments the amplitudes decrease and leave room for a new type of composite pairing correlation, breaking parity but preserving time reversal symmetry.Comment: Revtex, 28 pages incl. 5 figure

    A Solvable Regime of Disorder and Interactions in Ballistic Nanostructures, Part I: Consequences for Coulomb Blockade

    Full text link
    We provide a framework for analyzing the problem of interacting electrons in a ballistic quantum dot with chaotic boundary conditions within an energy ETE_T (the Thouless energy) of the Fermi energy. Within this window we show that the interactions can be characterized by Landau Fermi liquid parameters. When gg, the dimensionless conductance of the dot, is large, we find that the disordered interacting problem can be solved in a saddle-point approximation which becomes exact as g→∞g\to\infty (as in a large-N theory). The infinite gg theory shows a transition to a strong-coupling phase characterized by the same order parameter as in the Pomeranchuk transition in clean systems (a spontaneous interaction-induced Fermi surface distortion), but smeared and pinned by disorder. At finite gg, the two phases and critical point evolve into three regimes in the um−1/gu_m-1/g plane -- weak- and strong-coupling regimes separated by crossover lines from a quantum-critical regime controlled by the quantum critical point. In the strong-coupling and quantum-critical regions, the quasiparticle acquires a width of the same order as the level spacing Δ\Delta within a few Δ\Delta's of the Fermi energy due to coupling to collective excitations. In the strong coupling regime if mm is odd, the dot will (if isolated) cross over from the orthogonal to unitary ensemble for an exponentially small external flux, or will (if strongly coupled to leads) break time-reversal symmetry spontaneously.Comment: 33 pages, 14 figures. Very minor changes. We have clarified that we are treating charge-channel instabilities in spinful systems, leaving spin-channel instabilities for future work. No substantive results are change
    • …
    corecore