5 research outputs found

    The “Far-West” of Anopheles gambiae Molecular Forms

    Get PDF
    The main Afrotropical malaria vector, Anopheles gambiae sensu stricto, is undergoing a process of sympatric ecological diversification leading to at least two incipient species (the M and S molecular forms) showing heterogeneous levels of divergence across the genome. The physically unlinked centromeric regions on all three chromosomes of these closely related taxa contain fixed nucleotide differences which have been found in nearly complete linkage disequilibrium in geographic areas of no or low M-S hybridization. Assays diagnostic for SNP and structural differences between M and S forms in the three centromeric regions were applied in samples from the western extreme of their range of sympatry, the only area where high frequencies of putative M/S hybrids have been reported. The results reveal a level of admixture not observed in the rest of the range. In particular, we found: i) heterozygous genotypes at each marker, although at frequencies lower than expected under panmixia; ii) virtually all possible genotypic combinations between markers on different chromosomes, although genetic association was nevertheless detected; iii) discordant M and S genotypes at two X-linked markers near the centromere, suggestive of introgression and inter-locus recombination. These results could be indicative either of a secondary contact zone between M and S, or of the maintenance of ancestral polymorphisms. This issue and the perspectives opened by these results in the study of the M and S incipient speciation process are discussed

    Acaricidal properties of ylang-ylang oil and star anise oil against nymphs of Ixodes ricinus (Acari: Ixodidae)

    No full text
    Ylang-ylang oil (YYO) from Cananga odorata (Lam.) Hook.f. & Thomson and star anise oil (SAO) from Illicium verum Hook.f. were tested at four concentrations 0.05, 0.1, 0.2, 0.4 mu l/cm(2). Mortality rates were obtained by counting dead nymphs at 30-min intervals during the first 5h after the start of exposure and then at 24, 48 and 72h. Mortality increased with increasing oil concentration and time of exposure. The two highest concentrations of YYO (0.2, 0.4 mu l/cm(2)) gave maximum lethal concentrations (LC) of 50 and 95% mortality after 4.5h exposure. Mortality of 95% was obtained after 24h with the next highest dose (0.1 mu l/cm(2)), whereas LC95 required 3days with the lowest YYO (0.05 mu l/cm(2)). The lethal effect time (LT) was correlated with the duration of exposure, with a significant effect at 0.4l YYO/cm(2) after 3h' (LT50=3.2h, LT95=4.3h). In contrast, only the highest concentration of SAO, 0.4 mu l SAO/cm(2), showed increasing mortality with time of exposure. This reached LT50 after 10h and LT95 after 24h. However, with the lower concentration (0.2 mu l/cm(2)) 50% mortality was reached after 24h and 100% at 72h. At to the lowest concentration of SAO (0.1 mu l/cm(2)), 67% mortality after 48h. The study indicates that YYO and SAO exhibit strong acaricidal properties against nymphs of I. ricinus and suggest that both YYO and SAO should be evaluated as potentially useful in the control of ticks

    Essential oils of aromatic Egyptian plants repel nymphs of the tick Ixodes ricinus (Acari: Ixodidae)

    No full text
    Due to the role of Ixodes ricinus (L.) (Acari: Ixodidae) in the transmission of many serious pathogens, personal protection against bites of this tick is essential. In the present study the essential oils from 11 aromatic Egyptian plants were isolated and their repellent activity against I. ricinus nymphs was evaluated Three oils (i.e. Conyza dioscoridis L., Artemisia herba-alba Asso and Calendula officinalis L.) elicited high repellent activity in vitro of 94, 84.2 and 82%, respectively. The most active essential oil (C. dioscoridis) was applied in the field at a concentration of 6.5 A mu g/cm(2) and elicited a significant repellent activity against I. ricinus nymphs by 61.1%. The most repellent plants C. dioscoridis, C. officinalis and A. herba-alba yielded essential oils by 0.17, 0.11 and 0.14%, respectively. These oils were further investigated using gas chromatography-mass spectrometry analysis. alpha-Cadinol (10.7%) and hexadecanoic acid (10.5%) were the major components of C. dioscoridis whereas in C. officinalis, alpha-cadinol (21.2%) and carvone (18.2%) were major components. Artemisia herba-alba contained piperitone (26.5%), ethyl cinnamate (9.5%), camphor (7.7%) and hexadecanoic acid (6.9%). Essential oils of these three plants have a potential to be used for personal protection against tick bites

    Cardiopulmonary resuscitation in adults over 80 : outcome and the perception of appropriateness by clinicians

    No full text
    corecore