22 research outputs found

    The influence of the atmospheric refractive index on radio Xmax measurements of air showers

    Get PDF
    The refractive index of the atmosphere, which is n ≈ 1:0003 at sea level, varies with altitude and with local temperature, pressure and humidity. When performing radio measurements of air showers, natural variations in n will change the radio lateral intensity distribution, by changing the Cherenkov angle. Using CoREAS simulations, we have evaluated the systematic error on measurements of the shower maximum Xmax due to variations in n. It was found that a 10% increase in refractivity (n - 1) leads to an underestimation of Xmax between 8 and 22 g/cm2 for proton-induced showers at zenith angles from 15 to 45 degrees, respectively

    Cosmic Ray Mass Measurements with LOFAR

    Get PDF
    In the dense core of LOFAR individual air showers are detected by hundreds of dipole antennas simultaneously. We reconstruct Xmax by using a hybrid technique that combines a two-dimensional fit of the radio profile to CoREAS simulations and a one-dimensional fit of the particle density distribution. For high-quality detections, the statistical uncertainty on Xmax is smaller than 20 g/cm2. We present results of cosmic-ray mass analysis in the energy regime of 1017 - 1017.5 eV. This range is of particular interest as it may harbor the transition from a Galactic to an extragalactic origin of cosmic rays

    Towards real-time identification of cosmic rays with LOw-Frequency ARray radio antennas

    No full text
    Cosmic rays entering the Earth’s atmosphere produce Extensive Air Showers, which emit a radio signal through Geo-magnetic radiation and Askaryan emission. At the present time, one of the biggest challenges for assessing the Radio detection as a valuable technique for Cosmic-ray observation is to identify in real-time the very short (less than 100 ns) radio signals over the background noise. In this work, we present the latest updates on the real-time identification of radio signals from Extensive Air Showers by using the data from LOFAR Low Band Antenna stations, which are sensitive in the 30-80 MHz region

    A study of radio frequency spectrum emitted by high energy air showers with LOFAR

    Get PDF
    The high number density of radio antennas at the LOFAR core in Northern Netherlands allows to detect radio signals emitted by cosmic ray induced air showers, and to characterize the geometry of the observed cascade in a detailed way. We present here a study of the radio frequency spectrum in the 30 – 80 MHz regime, and its correlation with some geometrical parameters of the extensive air shower. An important goal of this study is to find a correlation between the frequency spectrum and the primary particle type. Preliminary results on how the frequency spectrum changes as function of distance to the shower axis, and as function of primary particles mass composition are shown. The final aim of this study is to find a method to infer information of primary cosmic rays in an independent way from the well-established fluorescence and surface detector techniques, in view of affirming the radio detection technique as reliable method for the study of high energy cosmic rays
    corecore