57 research outputs found

    Effect of a glucose impulse on the CcpA regulon in Staphylococcus aureus

    Get PDF
    BACKGROUND: The catabolite control protein A (CcpA) is a member of the LacI/GalR family of transcriptional regulators controlling carbon-metabolism pathways in low-GC Gram-positive bacteria. It functions as a catabolite repressor or activator, allowing the bacteria to utilize the preferred carbon source over secondary carbon sources. This study is the first CcpA-dependent transcriptome and proteome analysis in Staphylococcus aureus, focussing on short-time effects of glucose under stable pH conditions. RESULTS: The addition of glucose to exponentially growing S. aureus increased the expression of genes and enzymes of the glycolytic pathway, while genes and proteins of the tricarboxylic acid (TCA) cycle, required for the complete oxidation of glucose, were repressed via CcpA. Phosphotransacetylase and acetate kinase, converting acetyl-CoA to acetate with a concomitant substrate-level phosphorylation, were neither regulated by glucose nor by CcpA. CcpA directly repressed genes involved in utilization of amino acids as secondary carbon sources. Interestingly, the expression of a larger number of genes was found to be affected by ccpA inactivation in the absence of glucose than after glucose addition, suggesting that glucose-independent effects due to CcpA may have a particular impact in S. aureus. In the presence of glucose, CcpA was found to regulate the expression of genes involved in metabolism, but also that of genes coding for virulence determinants. CONCLUSION: This study describes the CcpA regulon of exponentially growing S. aureus cells. As in other bacteria, CcpA of S. aureus seems to control a large regulon that comprises metabolic genes as well as virulence determinants that are affected in their expression by CcpA in a glucose-dependent as well as -independent manner

    Early agr activation correlates with vancomycin treatment failure in multi-clonotype MRSA endovascular infections

    Get PDF
    Objectives Persistent MRSA infections are especially relevant to endovascular infections and correlate with suboptimal outcomes. However, the virulence signatures of Staphylococcus aureus that drive such persistence outcomes are not well defined. In the current study, we investigated correlations between accessory gene regulator (agr) activation and the outcome of vancomycin treatment in an experimental model of infective endocarditis (IE) due to MRSA strains with different agr and clonal complex (CC) types. Methods Twelve isolates with the four most common MRSA CC and agr types (CC5-agr II, CC8-agr I, CC30-agr III and CC45-agr I) were evaluated for heterogeneous vancomycin-intermediate S. aureus (hVISA), agr function, agrA and RNAIII transcription, agr locus sequences, virulence and response to vancomycin in the IE model. Results Early agr RNAIII activation (beginning at 2 h of growth) in parallel with strong δ-haemolysin production correlated with persistent outcomes in the IE model following vancomycin therapy. Importantly, such treatment failures occurred across the range of CC/agr types studied. In addition, these MRSA strains: (i) were vancomycin susceptible in vitro; (ii) were not hVISA or vancomycin tolerant; and (iii) did not evolve hVISA phenotypes or perturbed δ-haemolysin activity in vivo following vancomycin therapy. Moreover, agr locus sequence analyses revealed no common point mutations that correlated with either temporal RNAIII transcription or vancomycin treatment outcomes, encompassing different CC and agr types. Conclusions These data suggest that temporal agr RNAIII activation and agr functional profiles may be useful biomarkers to predict the in vivo persistence of endovascular MRSA infections despite vancomycin therap

    Impact of Vancomycin on sarA-Mediated Biofilm Formation: Role in Persistent Endovascular Infections Due to Methicillin-Resistant Staphylococcus aureus

    Get PDF
    Background. Staphylococcus aureus is the most common cause of endovascular infections. The staphylococcal accessory regulator A locus (sarA) is a major virulence determinant that may potentially impact methicillin-resistant S. aureus (MRSA) persistence in such infections via its influence on biofilm formation. Methods. Two healthcare-associated MRSA isolates from patients with persistent bacteremia and 2 prototypical community-acquired MRSA strains, as well as their respective isogenic sarA mutants, were studied for in vitro biofilm formation, fibronectin-binding capacity, autolysis, and protease and nuclease activities. These assays were done in the presence or absence of sub-minimum inhibitory concentrations (MICs) of vancomycin. In addition, these strain pairs were compared for intrinsic virulence and responses to vancomycin therapy in experimental infective endocarditis, a prototypical biofilm model. Results. All sarA mutants displayed significantly reduced biofilm formation and binding to fibronectin but increased protease production in vitro, compared with their respective parental strains. Interestingly, exposure to sub-MICs of vancomycin significantly promoted biofilm formation and fibronectin-binding in parental strains but not in sarA mutants. In addition, all sarA mutants became exquisitely susceptible to vancomycin therapy, compared with their respective parental strains, in the infective endocarditis model. Conclusions. These observations suggest that sarA activation is important in persistent MRSA endovascular infection, potentially in the setting of biofilm formatio

    Genomic Surveillance of Vancomycin-Resistant Enterococcus faecium Reveals Spread of a Linear Plasmid Conferring a Nutrient Utilization Advantage

    Full text link
    Healthcare-associated outbreaks of vancomycin-resistant Enterococcus faecium (VREfm) are a worldwide problem with increasing prevalence. The genomic plasticity of this hospital-adapted pathogen contributes to its efficient spread despite infection control measures. Here, we aimed to identify the genomic and phenotypic determinants of health care-associated transmission of VREfm. We assessed the VREfm transmission networks at the tertiary-care University Hospital of Zurich (USZ) between October 2014 and February 2018 and investigated microevolutionary dynamics of this pathogen. We performed whole-genome sequencing for the 69 VREfm isolates collected during this time frame and assessed the population structure and variability of the vancomycin resistance transposon. Phylogenomic analysis allowed us to reconstruct transmission networks and to unveil external or wider transmission networks undetectable by routine surveillance. Notably, it unveiled a persistent clone, sampled 31 times over a 29-month period. Exploring the evolutionary dynamics of this clone and characterizing the phenotypic consequences revealed the spread of a variant with decreased daptomycin susceptibility and the acquired ability to utilize N-acetyl-galactosamine (GalNAc), one of the primary constituents of the human gut mucins. This nutrient utilization advantage was conferred by a novel plasmid, termed pELF_USZ, which exhibited a linear topology. This plasmid, which was harbored by two distinct clones, was transferable by conjugation. Overall, this work highlights the potential of combining epidemiological, functional genomic, and evolutionary perspectives to unveil adaptation strategies of VREfm. IMPORTANCE Sequencing microbial pathogens causing outbreaks has become a common practice to characterize transmission networks. In addition to the signal provided by vertical evolution, bacterial genomes harbor mobile genetic elements shared horizontally between clones. While macroevolutionary studies have revealed an important role of plasmids and genes encoding carbohydrate utilization systems in the adaptation of Enterococcus faecium to the hospital environment, mechanisms of dissemination and the specific function of many of these genetic determinants remain to be elucidated. Here, we characterize a plasmid providing a nutrient utilization advantage and show evidence for its clonal and horizontal spread at a local scale. Further studies integrating epidemiological, functional genomics, and evolutionary perspectives will be critical to identify changes shaping the success of this pathogen. Keywords: Enterococcus faecium; N-acetyl-galactosamine; horizontal gene transfer; linear plasmid; transmission network

    Divergent Responses of Different Endothelial Cell Types to Infection with Candida albicans and Staphylococcus aureus

    Get PDF
    Endothelial cells are important in the pathogenesis of bloodstream infections caused by Candida albicans and Staphylococcus aureus. Numerous investigations have used human umbilical vein endothelial cells (HUVECs) to study microbial-endothelial cell interactions in vitro. However, the use of HUVECs requires a constant supply of umbilical cords, and there are significant donor-to-donor variations in these endothelial cells. The use of an immortalized endothelial cell line would obviate such difficulties. One candidate in this regard is HMEC-1, an immortalized human dermal microvascular endothelial cell line. To determine if HMEC-1 cells are suitable for studying the interactions of C. albicans and S. aureus with endothelial cells in vitro, we compared the interactions of these organisms with HMEC-1 cells and HUVECs. We found that wild-type C. albicans had significantly reduced adherence to and invasion of HMEC-1 cells as compared to HUVECs. Although wild-type S. aureus adhered to and invaded HMEC-1 cells similarly to HUVECs, an agr mutant strain had significantly reduced invasion of HMEC-1 cells, but not HUVECs. Furthermore, HMEC-1 cells were less susceptible to damage induced by C. albicans, but more susceptible to damage caused by S. aureus. In addition, HMEC-1 cells secreted very little IL-8 in response to infection with either organism, whereas infection of HUVECs induced substantial IL-8 secretion. This weak IL-8 response was likely due to the anatomic site from which HMEC-1 cells were obtained because infection of primary human dermal microvascular endothelial cells with C. albicans and S. aureus also induced little increase in IL-8 production above basal levels. Thus, C. albicans and S. aureus interact with HMEC-1 cells in a substantially different manner than with HUVECs, and data obtained with one type of endothelial cell cannot necessarily be extrapolated to other types

    The MTT assay is a rapid and reliable quantitative method to assess Staphylococcus aureus induced endothelial cell damage

    Full text link
    We established the (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay to assess damage induced by Staphylococcus aureus in human umbilical vein endothelial cells (HUVECs). The MTT assay was comparable to the previously published (51)chromium release assay. MTT reduction by intracellular S. aureus was negligible and therefore permits assessment of S. aureus induced EC damage

    CcpA Mediates the Catabolite Repression of tst in Staphylococcus aureusâ–¿

    No full text
    Some clinical isolates of Staphylococcus aureus produce the superantigenic toxic shock syndrome toxin 1 (TSST-1), encoded by tst, located on pathogenicity islands. The expression of tst is complex and is influenced by environmental conditions such as pH, CO2, and glucose. We identified a putative catabolite-responsive element (cre) in the promoter regions of all known tst genes, indicating that tst transcription may be regulated by the catabolite control protein CcpA. By introducing tst genes under the control of their native promoters or tst promoter-reporter gene fusions in wild-type strain Newman, we showed that glucose was able to repress tst transcription and TSST-1 production, whereas glucose repression was abolished in the corresponding ΔccpA mutant. Stabilizing the pH ruled out a pH effect due to acid production during glucose catabolism. CcpA thus directly regulates tst transcription, linking carbohydrate utilization to virulence gene expression in S. aureus

    The ArlRS two-component system is a regulator of Staphylococcus aureus-induced endothelial cell damage

    Full text link
    Staphylococcus aureus endovascular infections retain a high morbidity and mortality despite antibiotics and supportive care. The destruction of endothelial cells (ECs) is a critical step in the pathogenesis of S. aureus endovascular infections. In order to better understand S. aureus-induced EC damage, we systematically screened a collection of two-component regulatory system mutants of methicillin-resistant S. aureus (MRSA) USA300 strain JE2 for damage induction in human umbilical vein ECs (HUVECs). This screen revealed that the two-component regulatory system ArlRS is required for maximum damage: arlRS inactivation leads to a > 70% reduction in damage. In a different genetic S. aureus background (RN6390, MSSA strain) arlRS inactivation had a smaller but also significant effect on EC damage. In both strains, the reduction in EC damage was accompanied by a significant reduction in internalization. In conclusion, we determined a novel role of ArlRS in S. aureus-induced EC damage, which will help to better understand the pathogenesis of S. aureus endovascular infection

    Intracellular environment and agr system affect colony size heterogeneity of Staphylococcus aureus

    Get PDF
    Staphylococcus aureus causes chronic and relapsing infections, which may be difficult to treat. So-called small colony variants (SCVs) have been associated with chronic infections and their occurrence has been shown to increase under antibiotic pressure, low pH and intracellular localization. In clinics, S. aureus isolated from invasive infections often show a dysfunction in the accessory gene regulator (agr), a major virulence regulatory system in S. aureus. To assess whether intracellular environment and agr function influence SCV formation, an infection model was established using lung epithelial cells and skin fibroblasts. This allowed analyzing intracellular survival and localization of a panel of S. aureus wild type strains and their isogenic agr knock out mutants as well as a natural dysfunctional agr strain by confocal laser scanning microscopy (CLSM). Furthermore, bacterial colonies were quantified after 1, 3, and 5 days of intracellular survival by time-lapse analysis to determine kinetics of colony appearance and SCV formation. Here, we show that S. aureus strains with an agr knock out predominantly resided in a neutral environment, whereas wild type strains and an agr complemented strain resided in an acidic environment. S. aureus agr mutants derived from an intracellular environment showed a higher percentage of SCVs as compared to their corresponding wild type strains. Neutralizing acidic phagolysosomes with chloroquine resulted in a significant reduction of SCVs in S. aureus wild type strain 6850, but not in its agr mutant indicating a pH dependent formation of SCVs in the wild type strain. The in-depth understanding of the interplay between intracellular persistence, agr function and pH should help to identify new therapeutic options facilitating the treatment of chronic S. aureus infections in the future
    • …
    corecore