135 research outputs found

    Inflammasomes make the case for littermate-controlled experimental design in studying host-microbiota interactions

    Get PDF
    Several human diseases are thought to evolve due to a combination of host genetic mutations and environmental factors that include alterations in intestinal microbiota composition termed dysbiosis. Although in some cases, host genetics may shape the gut microbiota and enable it to provoke disease, experimentally disentangling cause and consequence in such host-microbe interactions requires strict control over non-genetic confounding factors. Mouse genetic studies previously proposed Nlrp6/ASC inflammasomes as innate immunity regulators of the intestinal ecosystem. In contrast, using littermate-controlled experimental setups, we recently showed that Nlrp6/ASC inflammasomes do not alter the gut microbiota composition. Our analyses indicated that maternal inheritance and long-term separate housing are non-genetic confounders that preclude the use of non-littermate mice when analyzing host genetic effects on intestinal ecology. Here, we summarize and discuss our gut microbiota analyses in inflammasome-deficient mice for illustrating the importance of littermate experimental design in studying host-microbiota interactions

    Nonneutralizing antibodies binding to the surface glycoprotein of lymphocytic choriomeningitis virus reduce early virus spread

    Get PDF
    The biological relevance of nonneutralizing antibodies elicited early after infection with noncytopathic persistence-prone viruses is unclear. We demonstrate that cytotoxic T lymphocyte–deficient TgH(KL25) mice, which are transgenic for the heavy chain of the lymphocytic choriomeningitis virus (LCMV)–neutralizing monoclonal antibody KL25, mount a focused neutralizing antibody response following LCMV infection, and that this results in the emergence of neutralization escape virus variants. Further investigation revealed that some of the escape variants that arose early after infection could still bind to the selecting antibody. In contrast, no antibody binding could be detected for late isolates, indicating that binding, but nonneutralizing, antibodies exerted a selective pressure on the virus. Infection of naive TgH(KL25) mice with distinct escape viruses differing in their antibody-binding properties revealed that nonneutralizing antibodies accelerated clearance of antibody-binding virus variants in a partly complement-dependent manner. Virus variants that did not bind antibodies were not affected. We therefore conclude that nonneutralizing antibodies binding to the same antigenic site as neutralizing antibodies are biologically relevant by limiting early viral spread

    Sensitization to gliadin induces moderate enteropathy and insulitis in nonobese diabetic-DQ8 mice

    Get PDF
    Celiac disease (CD) is frequently diagnosed in patients with type 1 diabetes (T1D), and T1D patients can exhibit Abs against tissue transglutaminase, the auto-antigen in CD. Thus, gliadin, the trigger in CD, has been suggested to have a role in T1D pathogenesis. The objective of this study was to investigate whether gliadin contributes to enteropathy and insulitis in NOD-DQ8 mice, an animal model that does not spontaneously develop T1D. Gliadin-sensitized NOD-DQ8 mice developed moderate enteropathy, intraepithelial lymphocytosis, and barrier dysfunction, but not insulitis. Administration of anti-CD25 mAbs before gliadin-sensitization induced partial depletion of CD25+Foxp3+ T cells and led to severe insulitis, but did not exacerbate mucosal dysfunction. CD4+T cells isolated from pancreatic lymph nodes of mice that developed insulitis showed increased proliferation and proinflammatory cytokines after incubation with gliadin but not with BSA. CD4+ T cells isolated from nonsensitized controls did not response to gliadin or BSA. In conclusion, gliadin sensitization induced moderate enteropathy in NOD-DQ8 mice. However, insulitis development required gliadin-sensitization and partial systemic depletion of CD25+Foxp3+ T cells. This humanized murine model provides a mechanistic link to explain how the mucosal intolerance to a dietary protein can lead to insulitis in the presence of partial regulatory T cell deficiency.Facultad de Ciencias Exacta

    Generation and analysis of a mouse intestinal metatranscriptome through Illumina based RNA-sequencing

    Get PDF
    With the advent of high through-put sequencing (HTS), the emerging science of metagenomics is transforming our understanding of the relationships of microbial communities with their environments. While metagenomics aims to catalogue the genes present in a sample through assessing which genes are actively expressed, metatranscriptomics can provide a mechanistic understanding of community inter-relationships. To achieve these goals, several challenges need to be addressed from sample preparation to sequence processing, statistical analysis and functional annotation. Here we use an inbred non-obese diabetic (NOD) mouse model in which germ-free animals were colonized with a defined mixture of eight commensal bacteria, to explore methods of RNA extraction and to develop a pipeline for the generation and analysis of metatranscriptomic data. Applying the Illumina HTS platform, we sequenced 12 NOD cecal samples prepared using multiple RNA-extraction protocols. The absence of a complete set of reference genomes necessitated a peptide-based search strategy. Up to 16% of sequence reads could be matched to a known bacterial gene. Phylogenetic analysis of the mapped ORFs revealed a distribution consistent with ribosomal RNA, the majority from Bacteroides or Clostridium species. To place these HTS data within a systems context, we mapped the relative abundance of corresponding Escherichia coli homologs onto metabolic and protein-protein interaction networks. These maps identified bacterial processes with components that were well-represented in the datasets. In summary this study highlights the potential of exploiting the economy of HTS platforms for metatranscriptomics

    Prospectus, October 10, 1984

    Get PDF
    SO YOU AND THE BULLY ON THE BLOCK ARE GOING TO DESTROY THE WORLD?\u27; PC Digest; Use your vote to make needed changes; First semester headaches; Auntie Miranda-Yes? or No?; Dear Reader; PC Happenings; Lifelong Learners to meet; Parkalnd schedules special registration; Workshop focuses on time management; Animal Health Technicians conference set; Health issues series continues; Emotional problems reason for help, not condemnation; Consumer Health Care Hotline; Notes of interest Prospectus read far and wide; Pictures worth more than a thousand words and dollars; Parkland instructor to teach GM class; Staff profile-Jim Scott-Entertainment writer; Advice from the duodenum-by Auntie Miranda; Wallace and Gray assets to both Parkland and \u27Taken in Marriage\u27; Music Poll; Explore the workings of the brain; Who\u27s top in pop?; Chick\u27s newest more than child\u27s play; Don\u27t miss a night of hilarity; Creative Corner...Especially for you!!; \u27The Foreigner\u27; The alarm clock-Monday morning blues; Natural selection; Bittersweet Memory; Pathways; Beautiful Stranger; Too Late; Love in the winter woods; \u27Doom Story\u27 the nightmare begins; Eternity; Green Eyes; Our day; Rejoice the Poet; Life Choices; Our place; Classifieds; Trust and acceptance provide supportive atmosphere; Change brings creation of destiny; Did You Know...; Kirby leads Cobra harriers to 7th; Lady Cobras win three, improve record to 18-5; A Tale of Three Freshmen; IM Volleyball; IM Football; Kirby says \u27Running is good for heart\u27; Schriefer takes pride in Parkland X-Country; Stewart places 3rd to lead Lady Cobras; Mullen twins guests on Cobra Raphttps://spark.parkland.edu/prospectus_1984/1009/thumbnail.jp

    Sensitization to gliadin induces moderate enteropathy and insulitis in nonobese diabetic-DQ8 mice

    Get PDF
    Celiac disease (CD) is frequently diagnosed in patients with type 1 diabetes (T1D), and T1D patients can exhibit Abs against tissue transglutaminase, the auto-antigen in CD. Thus, gliadin, the trigger in CD, has been suggested to have a role in T1D pathogenesis. The objective of this study was to investigate whether gliadin contributes to enteropathy and insulitis in NOD-DQ8 mice, an animal model that does not spontaneously develop T1D. Gliadin-sensitized NOD-DQ8 mice developed moderate enteropathy, intraepithelial lymphocytosis, and barrier dysfunction, but not insulitis. Administration of anti-CD25 mAbs before gliadin-sensitization induced partial depletion of CD25+Foxp3+ T cells and led to severe insulitis, but did not exacerbate mucosal dysfunction. CD4+T cells isolated from pancreatic lymph nodes of mice that developed insulitis showed increased proliferation and proinflammatory cytokines after incubation with gliadin but not with BSA. CD4+ T cells isolated from nonsensitized controls did not response to gliadin or BSA. In conclusion, gliadin sensitization induced moderate enteropathy in NOD-DQ8 mice. However, insulitis development required gliadin-sensitization and partial systemic depletion of CD25+Foxp3+ T cells. This humanized murine model provides a mechanistic link to explain how the mucosal intolerance to a dietary protein can lead to insulitis in the presence of partial regulatory T cell deficiency.Facultad de Ciencias Exacta

    Epithelial endoplasmic reticulum stress orchestrates a protective IgA response.

    Get PDF
    Immunoglobulin A (IgA) is the major secretory immunoglobulin isotype found at mucosal surfaces, where it regulates microbial commensalism and excludes luminal factors from contacting intestinal epithelial cells (IECs). IgA is induced by both T cell-dependent and -independent (TI) pathways. However, little is known about TI regulation. We report that IEC endoplasmic reticulum (ER) stress induces a polyreactive IgA response, which is protective against enteric inflammation. IEC ER stress causes TI and microbiota-independent expansion and activation of peritoneal B1b cells, which culminates in increased lamina propria and luminal IgA. Increased numbers of IgA-producing plasma cells were observed in healthy humans with defective autophagy, who are known to exhibit IEC ER stress. Upon ER stress, IECs communicate signals to the peritoneum that induce a barrier-protective TI IgA response.Wellcome Trust Senior Investigator Award 106260/Z/14/Z HORIZON2020/European Research Council Consolidator Grant 64888

    Depletion of Murine Intestinal Microbiota: Effects on Gut Mucosa and Epithelial Gene Expression

    Get PDF
    Background Inappropriate cross talk between mammals and their gut microbiota may trigger intestinal inflammation and drive extra-intestinal immune-mediated diseases. Epithelial cells constitute the interface between gut microbiota and host tissue, and may regulate host responses to commensal enteric bacteria. Gnotobiotic animals represent a powerful approach to study bacterial-host interaction but are not readily accessible to the wide scientific community. We aimed at refining a protocol that in a robust manner would deplete the cultivable intestinal microbiota of conventionally raised mice and that would prove to have significant biologic validity. Methodology/Principal Findings Previously published protocols for depleting mice of their intestinal microbiota by administering broad-spectrum antibiotics in drinking water were difficult to reproduce. We show that twice daily delivery of antibiotics by gavage depleted mice of their cultivable fecal microbiota and reduced the fecal bacterial DNA load by 400 fold while ensuring the animals' health. Mice subjected to the protocol for 17 days displayed enlarged ceca, reduced Peyer's patches and small spleens. Antibiotic treatment significantly reduced the expression of antimicrobial factors to a level similar to that of germ-free mice and altered the expression of 517 genes in total in the colonic epithelium. Genes involved in cell cycle were significantly altered concomitant with reduced epithelial proliferative activity in situ assessed by Ki-67 expression, suggesting that commensal microbiota drives cellular proliferation in colonic epithelium. Conclusion We present a robust protocol for depleting conventionally raised mice of their cultivatable intestinal microbiota with antibiotics by gavage and show that the biological effect of this depletion phenocopies physiological characteristics of germ-free mice
    • …
    corecore