17 research outputs found

    Seven-year efficacy and safety of treatment with tenofovir disoproxil fumarate for chronic hepatitis b virus ınfection

    Get PDF
    Background Long-term tenofovir disoproxil fumarate (TDF) treatment for chronic hepatitis B (CHB) is associated with sustained viral suppression and regression of fibrosis and cirrhosis at year 5 (240 weeks) and no TDF resistance through 6 years (288 weeks). Aim We assessed the efficacy, safety, and resistance of TDF for up to 7 years (336 weeks) in HBeAg-positive and HBeAg-negative CHB patients. Methods Patients who completed 1 year (48 weeks) of randomized treatment with TDF or adefovir dipivoxil were eligible to receive open-label TDF for a total duration of 8 years (384 weeks). Results Of 641 patients initially randomized, 585 (91.3 %) entered the open-label phase; 437/585 (74.7 %) remained on study at year 7. For patients on treatment at year 7, 99.3 % maintained viral suppression (HBV DNA = 0.5 mg/dL above baseline. No significant change in bone mineral density was observed from year 4 to year 7 (week 192 to week 336). Conclusions Long-term TDF treatment was associated with sustained virologic, biochemical, and serologic responses, without resistance. TDF treatment was well tolerated, with a low incidence of renal and bone events. These data confirm the safety and efficacy of long-term TDF for CHB.Gilead Science

    Effect of a Protease Inhibitor-Induced Genetic Bottleneck on Human Immunodeficiency Virus Type 1 env Gene Populations

    Get PDF
    The initiation of drug therapy or the addition of a new drug to preexisting therapy can have a significant impact on human immunodeficiency virus type 1 (HIV-1) populations within a person. Drug therapy directed at reverse transcriptase and protease can result in dramatic decreases in virus load, causing a contraction in the virus population that represents a potential genetic bottleneck as a subset of virus with genomes carrying resistance mutations repopulate the host. While this bottleneck exerts an effect directly on the region that is being targeted by the drugs, it also affects other regions of the viral genome. We have applied heteroduplex tracking assays (HTA) specific to variable regions 1 and 2 (V1/V2) and variable region 3 (V3) of the HIV-1 env gene to analyze the effect of a genetic bottleneck created by the selection of resistance to ritonavir, a protease inhibitor. Subjects were classified into groups on the basis of the extent of the initial drop in virus load and the duration of virus load reduction. Subjects with a strong initial drop in virus load exhibited a loss of heterogeneity in the env region at virus load rebound; in contrast, subjects with a weak initial drop in virus load exhibited little to no loss of heterogeneity at virus load rebound in either region of env examined. The duration of virus load reduction also affected env populations. Subjects that had prolonged reductions exhibited slower population diversification and the appearance of new V1/V2 species after rebound. The longer reduction of virus load in these subjects may have allowed for improved immune system function, which in turn could have selected for new escape mutants. Subjects with rapid rebound quickly reequilibrated the entry env variants back into the resistant population. When the pro gene developed further resistance mutations subsequent to virus load rebound, no changes were observed in V1/V2 or V3 populations, suggesting that the high virus loads allowed the env populations to reequilibrate rapidly. The rapid equilibration of env variants during pro gene sequence transitions at high virus load suggests that recombination is active in defining the HIV-1 sequence population. Conversely, part of the success of suppressive antiviral therapy may be to limit the potential for evolution through recombination, which requires dually infected cells

    Virologic Failure in First-Line Human Immunodeficiency Virus Therapy with a CCR5 Entry Inhibitor, Aplaviroc, plus a Fixed-Dose Combination of Lamivudine-Zidovudine: Nucleoside Reverse Transcriptase Inhibitor Resistance Regardless of Envelope Tropism▿

    No full text
    The CCR102881 (ASCENT) study evaluated the antiviral activity of the novel CCR5 entry inhibitor aplaviroc plus a fixed-dose combination of lamivudine-zidovudine (Combivir) in drug-naïve human immunodeficiency virus type 1-infected subjects with only CCR5-tropic virus detected in plasma. Although the trial was stopped prematurely due to idiosyncratic hepatotoxicity, eight subjects met protocol-defined virologic failure criteria. Clonal analyses of the viral envelope tropism, aplaviroc susceptibility, and env sequencing were performed on plasma at baseline and at the time of virologic failure. Molecular evolutionary analyses were also performed. The majority of the subjects with virologic failure (six of eight) acquired the lamivudine resistance-associated mutation M184V, and none had evidence of reduced susceptibility to aplaviroc at the time of virologic failure, even at the clonal level. Six subjects with virologic failure maintained CCR5 tropism, while two exhibited a change in population tropism readout to dual/mixed-tropic with R5X4-tropic clones detected prior to therapy. Two evolutionary patterns were observed: five subjects had no evidence of population turnover, while three subjects had multiple lines of evidence for env population turnover. The acquisition of the M184V mutation is the primary characteristic of virologic failure in first-line therapy with aplaviroc plus lamivudine-zidovudine, regardless of the envelope tropism

    Independent Evolution of Human Immunodeficiency Virus Type 1 env V1/V2 and V4/V5 Hypervariable Regions during Chronic Infection▿

    Get PDF
    Using DNA heteroduplex tracking assays, we characterized human immunodeficiency virus type 1 env V4/V5 genetic populations in multiple blood plasma samples collected over an average of 7 months from 24 chronically infected human subjects. We observed complex and dynamic V4/V5 genetic populations in most subjects. Comparisons of V4/V5 and V1/V2 population changes over the course of the study showed that major shifts in genetic populations frequently occurred in one region but not the other, and these observations were independently confirmed in one subject by single-genome sequencing. These results suggest that the V1/V2 and V4/V5 regions of env often evolve independently during chronic infection

    Turnover of env Variable Region 1 and 2 Genotypes in Subjects with Late-Stage Human Immunodeficiency Virus Type 1 Infection

    Get PDF
    The env gene of human immunodeficiency virus type 1 (HIV-1) includes some of the most genetically diverse regions of the viral genome, which are called variable regions 1 through 5 (V1 through V5). We have developed a heteroduplex tracking assay to detect changes in variable regions 1 and 2 of env (V1/V2-HTA). Using sequences from two molecular clones as probes, we have studied the nature of longitudinal virus population changes in a cohort of HIV-1-infected subjects. Viral sequences present in 21 subjects with late-stage HIV-1 infection were initially screened for stability of the virus population by V1/V2-HTA. The virus populations at entry comprised an average of five coexisting V1/V2 genotypic variants (as identified by HTA). Eight of the 21 subjects were examined in detail because of the dynamic behavior of their env variants over an approximately 9-month period. In each of these cases we detected a single discrete transition of V1/V2 genotypes based on monthly sampling. The major V1/V2 genotypes (those present at >10% abundance) from the eight subjects were cloned and sequenced to define the nature of V1/V2 variability associated with a discrete transition. Based on a comparison of V1/V2 genotypic variants present at entry with the newly emerged variants we categorized the newly emerged variants into two groups: variants without length differences and variants with length differences. Variants without length differences had fewer nucleotide substitutions, with the changes biased to either V1 or V2, suggestive of recent evolutionary events. Variants with length differences included ones with larger numbers of changes that were distributed, suggestive of recall of older genotypes. Most length differences were located in domains where the codon motif AVT (V = A, G, C) had become enriched and fixed. Finally, recombination events were detected in two subjects, one of which resulted in the reassortment of V1 and V2 regions. We suggest that turnover in V1/V2 populations was largely driven by selection on either V1 or V2 and that escape was accomplished either through changes focused in the region under selection or by the appearance of a highly divergent variant

    Virologic Failure in Therapy-Naïve Subjects on Aplaviroc plus Lopinavir-Ritonavir: Detection of Aplaviroc Resistance Requires Clonal Analysis of Envelope▿

    No full text
    The CCR100136 (EPIC) study evaluated the antiviral activity of the novel CCR5 entry inhibitor aplaviroc in combination with lopinavir-ritonavir in drug-naïve human immunodeficiency virus type 1-infected subjects. Although the trial was stopped prematurely due to idiosyncratic hepatotoxicity, 11 subjects met the protocol-defined virologic failure criteria. Clonal analyses of the viral envelope tropism, aplaviroc susceptibility, and env sequencing were performed on plasma at day 1 and at the time of virologic failure. Molecular evolutionary analyses were also performed. Treatment-emergent resistance to aplaviroc or lopinavir-ritonavir was not observed at the population level. However, aplaviroc resistance was detected prior to therapy at both the clonal and population levels in one subject with virologic failure and in six subjects in a minority (<50%) of clones at day 1 or at the time of virologic failure. Reduced aplaviroc susceptibility manifested as a 50% inhibitory concentration curve shift and/or a plateau. Sequence changes in the clones with aplaviroc resistance were unique to each subject and scattered across the envelope coding region. Clones at day 1 and at the time of virologic failure were not phylogenetically distinct. Two subjects with virologic failure had a population tropism change from CCR5- to dual/mixed-tropic during treatment. Virologic failure during a regimen of aplaviroc and lopinavir-ritonavir may be associated with aplaviroc resistance, only at the clonal level, and/or, infrequently, tropism changes

    Multiple V1/V2 env Variants Are Frequently Present during Primary Infection with Human Immunodeficiency Virus Type 1

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) exists as a complex population of multiple genotypic variants in persons with chronic infection. However, acute HIV-1 infection via sexual transmission is a low-probability event in which there is thought to be low genetic complexity in the initial inoculum. In order to assess the viral complexity present during primary HIV-1 infection, the V1/V2 and V3 variable regions of the env gene were examined by using a heteroduplex tracking assay (HTA) capable of resolving these genotypic variants. Blood plasma samples from 26 primary HIV-1-infected subjects were analyzed for their level of diversity. Half of the subjects had more than one V1/V2 viral variant during primary infection, indicating the frequent transmission of multiple variants. This observation is inconsistent with the idea of infrequent transmission based on a small transmitting inoculum of cell-free virus. In chronically infected subjects, the complexity of the viral populations was even greater in both the V1/V2 and the V3 regions than in acutely infected subjects, indicating that in spite of the presence of multiple variants in acute infection, the virus does pass through a genetic bottleneck during transmission. We also examined how well the infecting virus penetrated different anatomical compartments by using the HTA. Viral variants detected in blood plasma were compared to those detected in seminal plasma and/or cerebral spinal fluid of six individuals. The virus in each of these compartments was to a large extent identical to virus in blood plasma, a finding consistent with rapid penetration of the infecting variant(s). The low-probability transmission of multiple variants could be the result of transient periods of hyperinfectiousness or hypersusceptibility. Alternatively, the inefficient transfer of a multiply infected cell could account for both the low probability of transmission and the transfer of multiple variants

    HIV-1 populations in blood and breast milk are similar.

    Get PDF
    Mother-to-child transmission (MTCT) of human immunodeficiency virus type 1 (HIV-1) through breast milk is a significant mechanism of infection in many regions of the world. We compared the HIV-1 populations in paired blood and breast milk samples using a heteroduplex tracking assay (HTA) for the V1/V2 regions of env (V1/V2-HTA). V1/V2-HTA patterns were similar in the eight pairs of samples for which adequate template sampling could be demonstrated. No unique variants existed in either compartment, and differences detected in the relative abundance of variants between compartments were small, occurred among low abundance variants, and were not statistically significant. We also documented the impact of template sampling as a limiting feature in comparing two viral populations. The absence of unique variants and the lack of significant differences in the relative abundance of variants between these compartments support the conclusion that viruses in the blood plasma and breast milk are well equilibrated
    corecore