33 research outputs found

    Stress, Mindfulness and Occupational Engagement: A Pilot Study of the HOME Protocol

    Get PDF
    Stress and disengagement from meaningful occupations are barriers graduate students face daily. This mixed methods study aimed to investigate the effectiveness of the nine-minute Huntington Occupational Mindfulness and Engagement (HOME) protocol for occupational therapy (OT) graduate students to re-engage in meaningful occupations. Participants (N=29) were selected through a convenience sample at a Midwestern university’s OT doctoral program and randomly assigned to either an experimental HOME Protocol group or a control journaling group. Students completed the Coping Orientation to Problems (COPE) Inventory and the Perceived Stress Scale (PSS) as pre and post assessments and received training in the assigned protocols. For four weeks, participants utilized their designated protocols at least one time per week. Following data collection, optional focus groups provided insight into participants’ perceived engagement and use of the protocols. Data analyzed through paired t-tests and independent samples t-tests demonstrated significance in the reduction of stress levels (d=-1.595; p\u3c.001) and increased levels of engagement (d=1.106; p=.001) for the experimental group using the HOME Protocol. No significant difference was found between change scores of the experimental and control groups. Qualitative data revealed themes of Habit Formation, Management of Stress and Overwhelming Feelings, and Re-focus for Re-engagement in Activity. Integrated analysis of qualitative and quantitative data supported the HOME Protocol as a beneficial tool for students’ re-engagement in meaningful activities. The pilot study suggested positive benefits for increasing engagement and decreasing stress levels when using the HOME Protocol. Further research is indicated to determine its effectiveness when expanded to other academic programs that allow for a larger, more diverse sample

    Dairy foods and dairy protein consumption is inversely related to markers of adiposity in obese men and women

    Get PDF
    A number of intervention studies have reported that the prevalence of obesity may be in part inversely related to dairy food consumption while others report no association. We sought to examine relationships between energy, protein and calcium consumption from dairy foods (milk, yoghurt, cheese, dairy spreads, ice-cream) and adiposity including body mass index (BMI), waist (WC) and hip circumference (HC), and direct measures of body composition using dual energy X-ray absorptiometry (% body fat and abdominal fat) in an opportunistic sample of 720 overweight/obese Australian men and women. Mean (SD) age, weight and BMI of the population were 51 ± 10 year, 94 ± 18 kg and 32.4 ± 5.7 kg/m2, respectively. Reduced fat milk was the most commonly consumed dairy product (235 ± 200 g/day), followed by whole milk (63 ± 128 g/day) and yoghurt (53 ± 66 g/day). Overall dairy food consumption (g/day) was inversely associated with BMI, % body fat and WC (all p < 0.05). Dairy protein and dairy calcium (g/day) were both inversely associated with all adiposity measures (all p < 0.05). Yoghurt consumption (g/day) was inversely associated with % body fat, abdominal fat, WC and HC (all p < 0.05), while reduced fat milk consumption was inversely associated with BMI, WC, HC and % body fat (all p < 0.05). Within a sample of obese adults, consumption of dairy products, dairy protein, and calcium was associated with more favourable body composition

    Reliability of two goniometric methods of measuring active inversion and eversion range of motion at the ankle

    Get PDF
    BACKGROUND: Active inversion and eversion ankle range of motion (ROM) is widely used to evaluate treatment effect, however the error associated with the available measurement protocols is unknown. This study aimed to establish the reliability of goniometry as used in clinical practice. METHODS: 30 subjects (60 ankles) with a wide variety of ankle conditions participated in this study. Three observers, with different skill levels, measured active inversion and eversion ankle ROM three times on each of two days. Measurements were performed with subjects positioned (a) sitting and (b) prone. Intra-class correlation coefficients (ICC([2,1])) were calculated to determine intra- and inter-observer reliability. RESULTS: Within session intra-observer reliability ranged from ICC([2,1] )0.82 to 0.96 and between session intra-observer reliability ranged from ICC([2,1] )0.42 to 0.80. Reliability was similar for the sitting and the prone positions, however, between sessions, inversion measurements were more reliable than eversion measurements. Within session inter-observer measurements in sitting were more reliable than in prone and inversion measurements were more reliable than eversion measurements. CONCLUSION: Our findings show that ankle inversion and eversion ROM can be measured with high to very high reliability by the same observer within sessions and with low to moderate reliability by different observers within a session. The reliability of measures made by the same observer between sessions varies depending on the direction, being low to moderate for eversion measurements and moderate to high for inversion measurements in both positions

    Measurement of Contractile Stress Generated by Cultured Rat Muscle on Silicon Cantilevers for Toxin Detection and Muscle Performance Enhancement

    Get PDF
    Background: To date, biological components have been incorporated into MEMS devices to create cell-based sensors and assays, motors and actuators, and pumps. Bio-MEMS technologies present a unique opportunity to study fundamental biological processes at a level unrealized with previous methods. The capability to miniaturize analytical systems enables researchers to perform multiple experiments in parallel and with a high degree of control over experimental variables for high-content screening applications.Methodology/Principal Findings: We have demonstrated a biological microelectromechanical system (BioMEMS) based on silicon cantilevers and an AFM detection system for studying the physiology and kinetics of myotubes derived from embryonic rat skeletal muscle. It was shown that it is possible to interrogate and observe muscle behavior in real time, as well as selectively stimulate the contraction of myotubes with the device. Stress generation of the tissue was estimated using a modification of Stoney's equation. Calculated stress values were in excellent agreement with previously published results for cultured myotubes, but not adult skeletal muscle. Other parameters such as time to peak tension (TPT), the time to half relaxation (KRT) were compared to the literature. It was observed that the myotubes grown on the BioMEMS device, while generating stress magnitudes comparable to those previously published, exhibited slower TPT and KRT values. However, growth in an enhanced media increased these values. From these data it was concluded that the myotubes cultured on the cantilevers were of an embryonic phenotype. The system was also shown to be responsive to the application of a toxin, veratridine.Conclusions/Significance: The device demonstrated here will provide a useful foundation for studying various aspects of muscle physiology and behavior in a controlled high-throughput manner as well as be useful for biosensor and drug discovery applications

    The history and development of violin and violoncello duets

    No full text

    Ethnicity and household headship rates from the 1991 Census Availability of national and local data

    No full text
    Includes bibliographical referencesAvailable from British Library Document Supply Centre- DSC:3096. 2136(11) / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Intravenous versus oral paracetamol for acute pain in adults in the emergency department setting: a prospective, double-blind, double-dummy randomised controlled trail

    No full text
    Objective: To determine if intravenous paracetamol was superior to oral paracetamol as an adjunct to opioids in the management of moderate to severe pain in the ED setting. Methods: A prospective, randomised, double-blind, double-dummy, controlled trial was conducted at a single academic tertiary care ED. Adult patients with moderate to severe pain were randomly assigned to receive either the intravenous paracetamol or oral paracetamol. The primary outcome was Visual Analogue Scale (VAS) pain reduction at 30 min. A clinically significant change in pain was defined as 13 mm. Results: 87 participants were included in the final analysis, with a median age of 43.5 years and 59.8% were female. Overall mean baseline VAS pain score was 67.9 mm (±16.0). Both formulations achieved a clinically significant mean pain score reduction at 30 min, with no significant difference between the groups with 16.0 mm (SD 19.1 mm) in the intravenous group and 14.6 mm (SD 26.4) in the oral group; difference −1.4 mm (95% CI −11.6 to 8.8, P=0.79). Secondary outcomes, including postintervention intravenous opioid administration, patient satisfaction, side effects and length of stay, did not differ between groups. Conclusions: Overall, there was a small but clinically significant decrease in pain in each group. No superiority was demonstrated in this trial with intravenous paracetamol compared with oral paracetamol in terms of efficacy of analgesia and no difference in length of stay, patient satisfaction, need for rescue analgesia or side effects
    corecore