24 research outputs found

    Negative Regulators of Insulin Signaling Revealed in a Genome-Wide Functional Screen

    Get PDF
    Type 2 diabetes develops due to a combination of insulin resistance and β-cell failure and current therapeutics aim at both of these underlying causes. Several negative regulators of insulin signaling are known and are the subject of drug discovery efforts. We sought to identify novel contributors to insulin resistance and hence potentially novel targets for therapeutic intervention.An arrayed cDNA library encoding 18,441 human transcripts was screened for inhibitors of insulin signaling and revealed known inhibitors and numerous potential novel regulators. The novel hits included proteins of various functional classes such as kinases, phosphatases, transcription factors, and GTPase associated proteins. A series of secondary assays confirmed the relevance of the primary screen hits to insulin signaling and provided further insight into their modes of action.Among the novel hits was PALD (KIAA1274, paladin), a previously uncharacterized protein that when overexpressed led to inhibition of insulin's ability to down regulate a FOXO1A-driven reporter gene, reduced upstream insulin-stimulated AKT phosphorylation, and decreased insulin receptor (IR) abundance. Conversely, knockdown of PALD gene expression resulted in increased IR abundance, enhanced insulin-stimulated AKT phosphorylation, and an improvement in insulin's ability to suppress FOXO1A-driven reporter gene activity. The present data demonstrate that the application of arrayed genome-wide screening technologies to insulin signaling is fruitful and is likely to reveal novel drug targets for insulin resistance and the metabolic syndrome

    Receptor-Specific Mechanisms Regulate Phosphorylation of AKT at Ser473: Role of RICTOR in β1 Integrin-Mediated Cell Survival

    Get PDF
    A tight control over AKT/PKB activation is essential for cells, and they realise this in part by regulating the phosphorylation of Ser473 in the “hydrophobic motif” of the AKT carboxy-terminal region. The RICTOR-mTOR complex (TORC2) is a major kinase for AKT Ser473 phosphorylation after stimulation by several growth factors, in a reaction proposed to require p21-activated kinase (PAK) as a scaffold. However, other kinases may catalyse this reaction in stimuli-specific manners. Here we characterised the requirement of RICTOR, ILK, and PAK for AKT Ser473 phosphorylation downstream of selected family members of integrins, G protein-coupled receptors, and tyrosine-kinase receptors and analysed the importance of this phosphorylation site for adhesion-mediated survival. siRNA-mediated knockdown in HeLa and MCF7 cells showed that RICTOR-mTOR was required for phosphorylation of AKT Ser473, and for efficient phosphorylation of the downstream AKT targets FOXO1 Thr24 and BAD Ser136, in response to β1 integrin-stimulation. ILK and PAK1/2 were dispensable for these reactions. RICTOR knockdown increased the number of apoptotic MCF7 cells on β1 integrin ligands up to 2-fold after 24 h in serum-free conditions. β1 integrin-stimulation induced phosphorylation of both AKT1 and AKT2 but markedly preferred AKT2. RICTOR-mTOR was required also for LPA-induced AKT Ser473 phosphorylation in MCF7 cells, but, interestingly, not in HeLa cells. PAK was needed for the AKT Ser473 phosphorylation in response to LPA and PDGF, but not to EGF. These results demonstrate that different receptors utilise different enzyme complexes to phosphorylate AKT at Ser473, and that AKT Ser473 phosphorylation significantly contributes to β1 integrin-mediated anchorage-dependent survival of cells

    An integrated transcriptomic- and proteomic-based approach to evaluate the human skin sensitization potential of glyphosate and its commercial agrochemical formulations

    Get PDF
    We investigated the skin sensitization hazard of glyphosate, the surfactant polyethylated tallow amine (POEA) and two commercial glyphosate-containing formulations using different omics-technologies based on a human dendritic cell (DC)-like cell line. First, the GARDTskin assay, investigating changes in the expression of 200 transcripts upon cell exposure to xenobiotics, was used for skin sensitization prediction. POEA and the formulations were classified as skin sensitizers while glyphosate alone was classified as a non-sensitizer. Interestingly, the mixture of POEA together with glyphosate displayed a similar sensitizing prediction as POEA alone, indicating that glyphosate likely does not increase the sensitizing capacity when associated with POEA. Moreover, mass spectrometry analysis identified differentially regulated protein groups and predicted molecular pathways based on a proteomic approach in response to cell exposures with glyphosate, POEA and the glyphosate-containing formulations. Based on the protein expression data, predicted pathways were linked to immunologically relevant events and regulated proteins further to cholesterol biosynthesis and homeostasis as well as to autophagy, identifying novel aspects of DC responses after exposure to xenobiotics. In summary, we here present an integrative analysis involving advanced technologies to elucidate the molecular mechanisms behind DC activation in the skin sensitization process triggered by the investigated agrochemical materials. Significance: The use of glyphosate has increased worldwide, and much effort has been made to improve risk assessments and to further elucidate the mechanisms behind any potential human health hazard of this chemical and its agrochemical formulations. In this context, omics-based techniques can provide a multiparametric approach, including several biomarkers, to expand the mechanistic knowledge of xenobiotics-induced toxicity. Based on this, we performed the integration of GARDTskin and proteomic data to elucidate the skin sensitization hazard of POEA, glyphosate and its two commercial mixtures, and to investigate cellular responses more in detail on protein level. The proteomic data indicate the regulation of immune response-related pathways and proteins associated with cholesterol biosynthesis and homeostasis as well as to autophagy, identifying novel aspects of DC responses after exposure to xenobiotics. Therefore, our data show the applicability of a multiparametric integrated approach for the mechanism-based hazard evaluation of xenobiotics, eventually complementing decision making in the holistic risk assessment of chemicals regarding their allergenic potential in humans

    From genome-wide arrays to tailor-made biomarker readout – Progress towards routine analysis of skin sensitizing chemicals with GARD

    Get PDF
    Allergic contact dermatitis (ACD) initiated by chemical sensitizers is an important public health concern. To prevent ACD, it is important to identify chemical allergens to limit the use of such compounds in various products. EU legislations, as well as increased mechanistic knowledge of skin sensitization have promoted development of non-animal based approaches for hazard classification of chemicals. GARD is an in vitro testing strategy based on measurements of a genomic biomarker signature. However, current GARD protocols are optimized for identification of predictive biomarker signatures, and not suitable for standardized screening. This study describes improvements to GARD to progress from biomarker discovery into a reliable and cost-effective assay for routine testing. Gene expression measurements were transferred to NanoString nCounter platform, normalization strategy was adjusted to fit serial arrival of testing substances, and a novel strategy to correct batch variations was presented. When challenging GARD with 29 compounds, sensitivity, specificity and accuracy could be estimated to 94%, 83% and 90%, respectively. In conclusion, we present a GARD workflow with improved sample capacity, retained predictive performance, and in a format adapted to standardized screening. We propose that GARD is ready to be considered as part of an integrated testing strategy for skin sensitization

    In vitro assessment of mechanistic events induced by structurally related chemical rubber sensitizers

    No full text
    Allergic contact dermatitis (ACD) is one of the most common forms of immunotoxicity, and increased understanding of how chemicals trigger these adverse reactions is needed in order to treat or design testing strategies to identify and subsequently avoid exposure to such substances. In this study, we investigated the cellular response induced by rubber chemicals in a dendritic cell (DC) model, focusing on the structurally similar chemicals diethylthiocarbamylbenzothiazole sulfide and dimethylthiocarbamylbenzothiazole sulfide, with regard to regulation of microRNA, and messenger RNA expression. Only a few miRNAs were found to be commonly regulated by both rubber chemicals, among them miR1973, while the overall miRNA expression profiles were diverse. Similarly, out of approximately 500 differentially regulated transcripts for each chemical, about 60% overlapped, while remaining were unique. The pathways predicted to be enriched in the cell model by stimulation with the rubber chemicals were linked to immunological events, relevant in the context of ACD. These results suggest that small structural differences can trigger specific activation of the immune system in response to chemicals. The here presented mechanistic data can be valuable in explaining the immunotoxicological events in DC activation after exposure to skin sensitizing chemicals, and can contribute to understanding, preventing and treating ACD

    The GARD platform for potency assessment of skin sensitizing chemicals

    No full text
    Contact allergy induced by certain chemicals is a common health concern, and several alternative methods have been developed to fulfill the requirements of European legislation with regard to hazard assessment of potential skin sensitizers. However, validated methods, which provide information about the potency of skin sensitizers, are still lacking. The cell-based assay Genomic Allergen Rapid Detection (GARD), targeting key event 3, dendritic cell activation, of the skin sensitization AOP, uses gene expression profiling and a machine learning approach for the prediction of chemicals as sensitizers or non-sensitizers. Based on the GARD platform, we here expanded the assay to predict three sensitizer potency classes according to the European Classification, Labelling and Packaging (CLP) Regulation, targeting categories 1A (strong), 1B (weak) and no cat (non-sensitizer). Using a random forest approach and 70 training samples, a potential biomarker signature of 52 transcripts was identified. The resulting model could predict an independent test set consisting of 18 chemicals, six from each CLP category and all previously unseen to the model, with an overall accuracy of 78%. Importantly, the model was shown to be conservative and only underestimated the class label of one chemical. Furthermore, an association of defined chemical protein reactivity with distinct biological pathways illustrates that our transcriptional approach can reveal information contributing to the understanding of underlying mechanisms in sensitization

    Changes in Intestinal Permeability Ex Vivo and Immune Cell Activation by Three Commonly Used Emulsifiers

    No full text
    Food additives such as emulsifiers are used in increasing quantities in the food industry. The aim of this study was to compare three different emulsifiers (polysorbate 80 (P80), carboxymethyl cellulose (CMC), and β-lactoglobulin (β-lac) with regards to their effect on the stimulation of immune cells and intestinal permeability. The immune stimulatory effects were studied in the myeloid cell line MUTZ-3-cells, while the change in intestinal permeability was studied in the Caco-2 cell line and ex vivo in the Ussing chamber system using small intestinal fragments from rats. The tested concentrations of the emulsifiers ranged from 0.02% up to 1%, which are concentrations commonly used in the food industry. The results showed that P80 affected both the myeloid cells and the intestinal permeability more than CMC (p < 0.05) and β-lac (p < 0.05) at the highest concentration. CMC was found to neither affect the permeability in the intestine nor the MUTZ-3 cells, while β-lac changed the permeability in the total part of the small intestine in rats. These findings indicate that P80 might be more cytotoxic compared to the other two emulsifiers

    A proteomics dataset capturing myeloid cell responses upon cellular exposure to fungicides, adjuvants and fungicide formulations

    No full text
    Dendritic cells are the sentinels of the immune system, linking the innate and adaptive immune response. Myeloid and dendritic cell models have been successfully used in in vitro approaches to predict adverse outcomes such as skin sensitization. We here exposed a well-characterized human dendritic cell-like cell line to agricultural chemicals, including fungicide formulations, active ingredients, adjuvants and defined mixtures for 24 h to profile induced changes on protein levels. Cell pellets were harvested and prepared for bottom-up label-free analysis with peptide separation on an EASY-nano LC system 1200 coupled online with a QExactive HF-X mass spectrometer with data-dependent acquisition (DDA). The raw data files and processed quantitative data have been deposited to ProteomeXchange with the data identification number PXD034624 and are described here. The data in this article may serve as a resource for researchers interested in e.g. human toxicology, immunology, cell biology and pharmacology
    corecore