57 research outputs found

    Two-color holography concept (T-CHI)

    Get PDF
    The Material Processing in the Space Program of NASA-MSFC was active in developing numerous optical techniques for the characterization of fluids in the vicinity of various materials during crystallization and/or solidification. Two-color holographic interferometry demonstrates that temperature and concentration separation in transparent (T-CHI) model systems is possible. The experiments were performed for particular (succinonitrile) systems. Several solutions are possible in Microgravity Sciences and Applications (MSA) experiments on future Shuttle missions. The theory of the T-CHI concept is evaluated. Although particular cases are used for explanations, the concepts developed will be universal. A breadboard system design is also presented for ultimate fabrication and testing of theoretical findings. New developments in holography involving optical fibers and diode lasers are also incorporated

    A phase I trial of ispinesib, a kinesin spindle protein inhibitor, with docetaxel in patients with advanced solid tumours

    Get PDF
    The aim of this study is to define the maximum tolerated dose (MTD), safety, pharmacokinetics (PKs) and efficacy of ispinesib (SB-715992) in combination with docetaxel. Patients with advanced solid tumours were treated with ispinesib (6–12 mg m−2) and docetaxel (50–75 mg m−2). Docetaxel was administered over 1 h followed by a 1-h infusion of ispinesib on day 1 of a 21-day schedule. At least three patients were treated at each dose level. Blood samples were collected during cycle 1 for PK analysis. Clinical response assessments were performed every two cycles using RECIST guidelines. Twenty-four patients were treated at four dose levels. Prolonged neutropaenia and febrile neutropaenia were dose limiting in six and two patients, respectively. The MTD was ispinesib 10 mg m−2 with docetaxel 60 mg m−2. Pharmacokinetic assessment demonstrated concentrations of ispinesib and docetaxel, consistent with published data from single agent studies of the drugs. Seven patients (six hormone refractory prostate cancer (HRPC), one renal cancer) had a best response of stable disease (⩾18 weeks). One patient with HRPC had a confirmed >50% prostatic-specific antigen decrease. The MTD for ispinesib and docetaxel was defined and the combination demonstrated an acceptable toxicity profile. Preliminary PK data suggest no interaction between ispinesib and docetaxel

    Small molecule binding sites on the Ras:SOS complex can be exploited for inhibition of Ras activation.

    Get PDF
    Constitutively active mutant KRas displays a reduced rate of GTP hydrolysis via both intrinsic and GTPase-activating protein-catalyzed mechanisms, resulting in the perpetual activation of Ras pathways. We describe a fragment screening campaign using X-ray crystallography that led to the discovery of three fragment binding sites on the Ras:SOS complex. The identification of tool compounds binding at each of these sites allowed exploration of two new approaches to Ras pathway inhibition by stabilizing or covalently modifying the Ras:SOS complex to prevent the reloading of Ras with GTP. Initially, we identified ligands that bound reversibly to the Ras:SOS complex in two distinct sites, but these compounds were not sufficiently potent inhibitors to validate our stabilization hypothesis. We conclude by demonstrating that covalent modification of Cys118 on Ras leads to a novel mechanism of inhibition of the SOS-mediated interaction between Ras and Raf and is effective at inhibiting the exchange of labeled GDP in both mutant (G12C and G12V) and wild type Ras

    Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease

    Get PDF
    COVID-19, caused by SARS-CoV-2, lacks effective therapeutics. Additionally, no antiviral drugs or vaccines were developed against the closely related coronavirus, SARS-CoV-1 or MERS-CoV, despite previous zoonotic outbreaks. To identify starting points for such therapeutics, we performed a large-scale screen of electrophile and non-covalent fragments through a combined mass spectrometry and X-ray approach against the SARS-CoV-2 main protease, one of two cysteine viral proteases essential for viral replication. Our crystallographic screen identified 71 hits that span the entire active site, as well as 3 hits at the dimer interface. These structures reveal routes to rapidly develop more potent inhibitors through merging of covalent and non-covalent fragment hits; one series of low-reactivity, tractable covalent fragments were progressed to discover improved binders. These combined hits offer unprecedented structural and reactivity information for on-going structure-based drug design against SARS-CoV-2 main protease
    • …
    corecore