9 research outputs found

    Deficits in Analogical Reasoning in Adolescents with Traumatic Brain Injury

    Get PDF
    Individuals with traumatic brain injury (TBI) exhibit deficits in executive control, which may impact their reasoning abilities. Analogical reasoning requires working memory and inhibitory abilities. In this study, we tested adolescents with moderate to severe TBI and typically developing (TD) controls on a set of picture analogy problems. Three factors were varied: complexity (number of relations in the problems), distraction (distractor item present or absent), and animacy (living or non-living items in the problems). We found that TD adolescents performed significantly better overall than TBI adolescents. There was also an age effect present in the TBI group where older participants performed better than younger ones. This age effect was not observed in the TD group. Performance was affected by complexity and distraction. Further, TBI participants exhibited lower performance with distractors present than TD participants. The reasoning deficits exhibited by the TBI participants were correlated with measures of executive function that required working memory updating, attention, and attentional screening. Using MRI-derived measures of cortical thickness, correlations were carried out between task accuracy and cortical thickness. The TD adolescents showed negative correlations between thickness and task accuracy in frontal and temporal regions consistent with cortical maturation in these regions. This study demonstrates that adolescent TBI results in impairments in analogical reasoning ability. Further, TBI youth have difficulty effectively screening out distraction, which may lead to failures in comprehension of the relations among items in visual scenes. Lastly, TBI youth fail to show robust cortical–behavior correlations as observed in TD individuals

    The Neurological Outcome Scale for Traumatic Brain Injury (NOS-TBI): I. Construct Validity

    No full text
    The Neurological Outcome Scale for Traumatic Brain Injury (NOS-TBI) is a measure adapted from the National Institutes of Health Stroke Scale (NIHSS), and is intended to capture essential neurological deficits impacting individuals with traumatic brain injury (TBI) (see Wilde et al., 2010). In the present study we evaluate the measure's construct validity via comparison with a quantified neurological examination performed by a neurologist. Spearman rank-order correlation between the NOS-TBI and the neurological examination was ρ = 0.76, p < 0.0001, suggesting a high degree of correspondence (construct validity) between these two measures of neurological function. Additionally, items from the NOS-TBI compared favorably to the neurological examination items, with correlations ranging from 0.60 to 0.99 (all p < 0.0001). On formal neurological examination, some degree of neurological impairment was observed in every participant in this cohort of individuals undergoing rehabilitation for TBI, and on the NOS-TBI neurological impairment was evident in all but one participant. This study documents the presence of measurable neurological sequelae in a sample of patients with TBI in a post-acute rehabilitation setting, underscoring the need for formal measurement of the frequency and severity of neurological deficits in this population. The results suggest that the NOS-TBI is a valid measure of neurological functioning in patients with TBI

    The Neurological Outcome Scale for Traumatic Brain Injury (NOS-TBI): II. Reliability and Convergent Validity

    No full text
    A standardized measure of neurological dysfunction specifically designed for TBI currently does not exist and the lack of assessment of this domain represents a substantial gap. To address this, the Neurological Outcome Scale for Traumatic Brain Injury (NOS-TBI) was developed for TBI outcomes research through the addition to and modification of items specifically relevant to patients with TBI, based on the National Institutes of Health Stroke Scale. In a sample of 50 participants (mean age = 33.3 years, SD = 12.9) ≤18 months (mean = 3.1, SD = 3.2) following moderate (n = 8) to severe (n = 42) TBI, internal consistency of the NOS-TBI was high (Cronbach's alpha = 0.942). Test-retest reliability also was high (ρ = 0.97, p < 0.0001), and individual item kappas between independent raters were excellent, ranging from 0.83 to 1.0. Overall inter-rater agreement between independent raters (Kendall's coefficient of concordance) for the NOS-TBI total score was excellent (W = 0.995). Convergent validity was demonstrated through significant Spearman rank-order correlations between the NOS-TBI and the concurrently administered Disability Rating Scale (ρ = 0.75, p < 0.0001), Rancho Los Amigos Scale (ρ = −0.60, p < 0.0001), Supervision Rating Scale (ρ = 0.59, p < 0.0001), and the FIM™ (ρ = −0.68, p < 0.0001). These results suggest that the NOS-TBI is a reliable and valid measure of neurological functioning in patients with moderate to severe TBI
    corecore