41 research outputs found

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Multiple chromatin-bound protein kinases assemble factors that regulate insulin gene transcription

    No full text
    During the onset of diabetes, pancreatic β cells become unable to produce sufficient insulin to maintain blood glucose within the normal range. Proinflammatory cytokines have been implicated in impaired β cell function. To understand more about the molecular events that reduce insulin gene transcription, we examined the effects of hyperglycemia alone and together with the proinflammatory cytokine interleukin-1β (IL-1β) on signal transduction pathways that regulate insulin gene transcription. Exposure to IL-1β in fasting glucose activated multiple protein kinases that associate with the insulin gene promoter and transiently increased insulin gene transcription in β cells. In contrast, cells exposed to hyperglycemic conditions were sensitized to the inhibitory actions of IL-1β. Under these conditions, IL-1β caused the association of the same protein kinases, but a different combination of transcription factors with the insulin gene promoter and began to reduce transcription within 2 h; stimulatory factors were lost, RNA polymerase II was lost, and inhibitory factors were bound to the promoter in a kinase-dependent manner

    Phosphorylation or Mutation of the ERK2 Activation Loop Alters Oligonucleotide Binding

    No full text
    The mitogen-activated protein kinase ERK2 is able to elicit a wide range of context-specific responses to distinct stimuli, but the mechanisms underlying this versatility remain in question. Some cellular functions of ERK2 are mediated through regulation of gene expression. In addition to phosphorylating numerous transcriptional regulators, ERK2 is known to associate with chromatin and has been shown to bind oligonucleotides directly. ERK2 is activated by the upstream kinases MEK1/2, which phosphorylate both tyrosine 185 and threonine 183. ERK2 requires phosphorylation on both sites to be fully active. Some additional ERK2 phosphorylation sites have also been reported, including threonine 188. It has been suggested that this phospho form has distinct properties. We detected some ERK2 phosphorylated on T188 in bacterial preparations of ERK2 by mass spectrometry and further demonstrate that phosphomimetic substitution of this ERK2 residue impairs its kinase activity toward well-defined substrates and also affects its DNA binding. We used electrophoretic mobility shift assays with oligonucleotides derived from the insulin gene promoter and other regions to examine effects of phosphorylation and mutations on the binding of ERK2 to DNA. We show that ERK2 can bind oligonucleotides directly. Phosphorylation and mutations alter DNA binding and support the idea that signaling functions may be influenced through an alternate phosphorylation site.Fil: McReynolds, Andrea C.. The University of Texas Southwestern Medical Center; Estados UnidosFil: Karra, Aroon S.. The University of Texas Southwestern Medical Center; Estados UnidosFil: Li, Yan. The University of Texas Southwestern Medical Center; Estados Unidos. National Institute of Neurological Disorders and Stroke; Estados UnidosFil: Lopez, Elias Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Turjanski, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Dioum, Elhadji. The University of Texas Southwestern Medical Center; Estados UnidosFil: Lorenz, Kristina. Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V; AlemaniaFil: Zaganjor, Elma. The University of Texas Southwestern Medical Center; Estados UnidosFil: Stippec, Steve. The University of Texas Southwestern Medical Center; Estados UnidosFil: McGlynn, Kathleen. The University of Texas Southwestern Medical Center; Estados UnidosFil: Earnest, Svetlana. The University of Texas Southwestern Medical Center; Estados UnidosFil: Cobb, Melanie H.. The University of Texas Southwestern Medical Center; Estados Unido
    corecore