2,941 research outputs found

    Small-scale intraspecific life history variation in herbivorous spider mites (Tetranychus pacificus) is associated with host plant cultivar.

    Get PDF
    Life history variation is a general feature of arthropod systems, but is rarely included in models of field or laboratory data. Most studies assume that local processes occur identically across individuals, ignoring any genetic or phenotypic variation in life history traits. In this study, we tested whether field populations of Pacific spider mites (Tetranychus pacificus) on grapevines (Vitis vinifera) display significant intraspecific life history variation associated with host plant cultivar. To address this question we collected individuals from sympatric vineyard populations where either Zinfandel or Chardonnay were grown. We then conducted a "common garden experiment" of mites on bean plants (Phaseolus lunatus) in the laboratory. Assay populations were sampled non-destructively with digital photography to quantify development times, survival, and reproductive rates. Two classes of models were fit to the data: standard generalized linear mixed models and a time-to-event model, common in survival analysis, that allowed for interval-censored data and hierarchical random effects. We found a significant effect of cultivar on development time in both GLMM and time-to-event analyses, a slight cultivar effect on juvenile survival, and no effect on reproductive rate. There were shorter development times and a trend towards higher juvenile survival in populations from Zinfandel vineyards compared to those from Chardonnay vineyards. Lines of the same species, originating from field populations on different host plant cultivars, expressed different development times and slightly different survival rates when reared on a common host plant in a common environment

    Predictors of incident herpes simplex virus type 2 infections in young women at risk for unintended pregnancy in San Francisco.

    Get PDF
    BackgroundYoung women receiving family planning services are at risk for both unintended pregnancy and herpes simplex virus type 2 (HSV-2) infection.MethodsWe performed a secondary analysis using data from a previously published randomized controlled trial evaluating access to emergency contraception on reproductive health outcomes. Women aged 15 to 24 years were recruited from two Planned Parenthood clinics and two community health clinics in San Francisco. Demographic information and sexual history were obtained by interview. HSV-2 seropositivity was determined by fingerstick blood test. New pregnancies were measured by self-report, urine testing and medical chart review. Subjects were evaluated for incident HSV-2 infection and pregnancy at a 6-month follow-up appointment. Women who were pregnant or intending to become pregnant at enrolment were excluded.ResultsAt enrolment 2,104 women were screened for HSV-2 and 170 (8.1%) were seropositive. Eighty-seven percent of initially seronegative women completed the study (n = 1,672) and 73 (4.4%) became HSV-2 seropositive. HSV-2 seroincidence was 7.8 cases per 100 person-years. One hundred and seventeen women (7%) became pregnant and 7 (6%) of these had a seroincident HSV-2 infection during the study. After adjustment for confounders, predictors of incident HSV-2 infection were African American race and having multiple partners in the last six months. Condom use at last sexual encounter was protective.ConclusionHSV-2 seroincidence and the unintended pregnancy rate in young women were high. Providers who counsel women on contraceptive services and sexually transmitted infection prevention could play an expanded role in counselling women about HSV-2 prevention given the potential sequelae in pregnancy. The potential benefit of targeted screening and future vaccination against HSV-2 needs to be assessed in this population

    Assessing the potential impact of environmental land management schemes on emergent infection disease risks

    Full text link
    Financial incentives are provided by governments to encourage the plantation of new woodland to increase habitat, biodiversity, carbon sequestration, and other economic benefits for landowners. Whilst these are largely positive effects, it is worth considering that greater biodiversity and presence of wildlife species in proximity to agricultural holdings may pose a risk of disease transmission between wildlife and livestock. Wildlife transmission and the provision of a reservoir for infectious disease is particularly important in the transmission dynamics of bovine tuberculosis. In this paper we develop an economic model for changing land use due to forestry subsidies. We use this asses the impact on wild deer populations in the newly created woodland areas and the emergent infectious disease risk arising from the proximity of new and existing wild deer populations and existing cattle holdings. We consider an area in the South-West of Scotland, having existing woodland, deer populations, and extensive and diverse cattle farm holdings. In this area we find that, with a varying level of subsidy and plausible new woodland creation, the contact risk between areas of wild deer and cattle increases between 26% and 35% over the contact risk present with zero subsidy. This model provides a foundation for extending to larger regions and for examining potential risk mitigation strategies, for example the targeting of subsidy in low risk areas or provisioning for buffer zones between woodland and agricultural holdings

    Modelling Marek's Disease Virus (MDV) infection: parameter estimates for mortality rate and infectiousness

    Get PDF
    Background: Marek's disease virus (MDV) is an economically important oncogenic herpesvirus of poultry. Since the 1960s, increasingly virulent strains have caused continued poultry industry production losses worldwide. To understand the mechanisms of this virulence evolution and to evaluate the epidemiological consequences of putative control strategies, it is imperative to understand how virulence is defined and how this correlates with host mortality and infectiousness during MDV infection. We present a mathematical approach to quantify key epidemiological parameters. Host lifespan, virus latent periods and host viral shedding rates were estimated for unvaccinated and vaccinated birds, infected with one of three MDV strains. The strains had previously been pathotyped to assign virulence scores according to pathogenicity of strains in hosts. Results: Our analyses show that strains of higher virulence have a higher viral shedding rate, and more rapidly kill hosts. Vaccination enhances host life expectancy but does not significantly reduce the shedding rate of the virus. While the primary latent period of the virus does not vary with challenge strain nor vaccine treatment of host, the time until the maximum viral shedding rate is increased with vaccination. Conclusions: Our approach provides the tools necessary for a formal analysis of the evolution of virulence in MDV, and potentially simpler and cheaper approaches to comparing the virulence of MDV strains

    Broadening Traditional Aviation Meteorology Education to Support Spaceflight Operations

    Get PDF
    The purpose of this paper is to examine the expansion of traditional aviation meteorology education necessary to support the growing commercial space-operations industry. While spaceflight meteorological considerations do overlap with those of traditional aviation operations, there are notable differences schools must address for appropriate education and training of both meteorologists and operators. These include knowledge of increased weather sensitivities, space-weather impacts, triggered lightning, triboelectrification, and high-resolution vertical wind-profile analyses. An added challenge in the educational process is the more limited amount of publicly available weather and space-weather products necessary to support spaceflight education. Furthermore, in comparison with traditional aviation meteorology, real-world experiential learning opportunities for students to support actual space-launch and on-orbit operations are limited. However, flight simulations employing historical meteorological and space-weather data may help provide the basic educational tools necessary to overcome these limitations and better prepare students pursuing careers in spaceflight, either as operators or as meteorologists
    corecore