18 research outputs found

    Habitat differences in marine invasions of central california. Biol Invasions 7:935–48

    No full text
    Abstract We carried out a two-part investigation that revealed habitat differences in marine invertebrate invasions. First, we compared invasion levels of hard vs soft substrata in Elkhorn Slough, an estuary in Central California, by comparing abundance and richness of native vs exotic species in quantitative samples from each habitat type. Our results revealed that the hard substrata were much more heavily invaded than the soft substrata. Nearly all the hard substrata in Elkhorn Slough, as in most estuaries along the Pacific coast of North America, are artificial (jetties, rip-rap, docks). Some exotic species may by chance be better adapted to this novel habitat type than are natives. Two major vectors responsible for marine introductions, oyster culturing and ship-hull fouling, are also more likely to transport species associated with hard vs soft substrata. Secondly, we compared estuarine and open coast invasion rates. We examined species richness in Elkhorn Slough and adjacent rocky intertidal habitats along the Central California coast. The absolute number of exotic species in the estuary was an order of magnitude higher than along the open coast (58 vs 8 species), as was the percentage of the invertebrate fauna that was exotic (11% vs 1%). Estuaries on this coast are geologically young, heavily altered by humans, and subject to numerous transport vectors bringing invasive propagules: all these factors may explain why they are strikingly more invaded than the open coast. The finding that the more species rich habitat -the open coast -is less invaded is in contrast to many terrestrial examples, where native and exotic species richness appear to be positively correlated at a broad geographic scale

    Soil CO2 efflux in a temperate deciduous forest: environmental drivers and component contributions

    No full text
    Soil CO₂ efflux is a large component of total respiration in many ecosystems. It is important to understand the environmental controls on soil CO₂ efflux, in order to evaluate potential reponses of ecosystems to climate change. This study investigated the relationship between total soil CO₂ efflux and soil temperature, soil moisture and solar radiation on an interannual basis for a plot of temperate deciduous ancient semi-natural woodland at Wytham Woods in central southern England. We also aimed to quantify the contribution of soil organic matter decomposition (SOM), root-and-rhizosphere respiration, and mycorrhizal respiration components to total soil CO₂ efflux, and determine their environmental correlates. Total soil CO₂ efflux was measured regularly from April 2006 to December 2008 and found to average 4.1 Mg C ha⁻Âč yr⁻Âč in both 2007 and 2008. In addition, we applied a recently developed approach to partition the efflux into SOM, root-and-rhizosphere, and mycorrhizal components in situ using mesh bags. SOM decomposition, root-and-rhizosphere, and mycorrhizal respiration were estimated to contribute 70 ± 6%, 22 ± 6% and 8 ± 3% of total soil CO₂ efflux respectively, equating to 3.0 ± 0.3, 0.9 ± 0.2 and 0.3 ± 0.1 Mg C ha⁻Âč yr⁻Âč. In order to avoid the effect of temporal correlation between variables caused by seasonality, we investigated interannual variability by examining the relationship between CO₂ flux anomalies and anomalies in environmental variables. Variation in soil temperature explained 50% of the interannual variance in soil CO₂ efflux, and soil moisture a further 18% of the residual variance. Solar radiation, as a proxy for plant photsynthesis, had no significant effect on total soil CO₂ efflux, but was positively correlated with root-and-rhizosphere respiration, and mycorrhizal respiration. The relationship between anomalies in soil CO₂ efflux and soil temperature was highly significant, with a sensitivity of 0.164 ± 0.023ÎŒmol CO₂ m⁻ÂČs⁻Âč°C⁻Âč. For mean peak summer efflux rates (2.03ÎŒmol CO₂ m⁻ÂČs⁻Âč), this is equivalent to 8% per °C, or Q10 temperature sensitivity of 2.2 ± 0.2. We demonstrate the utility of an anomaly analysis approach and conclude that soil temperture is the key driver of total soil CO₂ efflux primarily through its positive relationship with SOM-decomposition rate

    A nap consolidates generalized perceptual learning

    Get PDF
    Previous research has demonstrated that a night's sleep can consolidate rote and generalized perceptual learning. Over a waking retention period following training, performance gains from learning significantly decline, but sleep can restore performance to levels found immediately after learning. Furthermore, when sleep precedes a waking retention period following training, performance is protected against loss. Other research demonstrating that rote learning can be consolidated by a night's sleep has shown that a relatively brief nap can consolidate rote learning. This suggests that short periods of sleep can produce consolidation, indicating that consolidation may not require successive sleep cycles over an entire night to emerge. However, previous research has demonstrated that there can be differences in sleep-dependent consolidation for rote and generalized learning. In this study, we investigated whether an opportunity for a 90-min midday nap was sufficient to consolidate generalized perceptual learning of synthetic speech. We recruited 75 participants from the University of Chicago community (mean age of 20.83) who completed a pretest, training, and posttest in the morning on perception of synthetic speech. Training and testing in this manner are known to result in substantial generalized learning of synthetic speech. Participants then returned in the afternoon and were either given an opportunity for a 90-min nap or remained awake for 90-min. Participants were then given another posttest later that evening, never hearing the same words twice during the experiment. Results demonstrated that participants who did not nap showed significant loss of learning at the evening posttest. In contrast, individuals who napped retained what they learned, and did not show loss of learning at the evening posttest. These results are consistent with the view that an opportunity for a 90-min midday nap can consolidate generalized learning, as only individuals with consolidated learning should be able to retain what they learned despite an intervening waking retention period. This is the first demonstration that generalized skill learning is subject to sleep-dependent consolidation in short durations of sleep and does not require a full night of sleep. This work has implications for understanding the basic neural mechanisms that operate to stabilize short-term learning experiences

    Life History of the Endangered Cape Sable Seaside Sparrow

    No full text
    Volume: 109Start Page: 720End Page: 73

    Darobactin B stabilises a lateral-closed conformation of the BAM complex in <i>E. coli</i> cells

    Get PDF
    C.P. acknowledges the Biotechnology and Biological Sciences Research Council (BBSRC) (BB/S018069/1; BB/W019795/1) for funding. cwEPR data were collected at the Pliotas Laboratory (BB/S018069/1) and PELDOR data were collected at the University of St Andrews, supported by equipment funding from the Wellcome Trust (WT) (099149/Z/12/Z) and BBSRC (BB/R013780/1). CryoEM data were collected at the Astbury Biostructure Laboratory, funded by the University of Leeds and the WT (108466/Z/15/Z; 221524/Z/20/Z). J.E.H. and K.F. acknowledge funding from the Medical Research Council (MRC) (MR/P018491/1). S.F.H. is funded by the White Rose BBSRC DTP (BB/M011151/1). J.M. is funded by the WT (222373/Z/21/Z). SER holds a Royal Society Professorial Fellowship (RSRP/R1/211057). T.F.S and N.B. acknowledge funding from the German Federal Ministry of Education and Research (BMBF, via grant GBi2S and German Centrefor Infection Research (DZIF) 09.918)The Β-barrel assembly machinery (BAM complex) is essential for outer membrane protein (OMP) folding in Gram-negative bacteria, and represents a promising antimicrobial target. Several conformational states of BAM have been reported, but all have been obtained under conditions which lack the unique features and complexity of the outer membrane (OM). Here, we use Pulsed Electron-Electron Double Resonance (PELDOR, or DEER) spectroscopy distance measurements to interrogate the conformational ensemble of the BAM complex in E. coli cells. We show that BAM adopts a broad ensemble of conformations in the OM, while in the presence of the antibiotic darobactin B (DAR-B), BAM's conformational equilibrium shifts to a restricted ensemble consistent with the lateral closed state. Our in-cell PELDOR findings are supported by new cryoEM structures of BAM in the presence and absence of DAR-B. This work demonstrates the utility of PELDOR to map conformational changes in BAM within its native cellular environment.Publisher PDFPeer reviewe

    Wildfire Smoke Particle Properties and Evolution, From Space-Based Multi-Angle Imaging II: The Williams Flats Fire during the FIREX-AQ Campaign

    No full text
    Although the characteristics of biomass burning events and the ambient ecosystem determine emitted smoke composition, the conditions that modulate the partitioning of black carbon (BC) and brown carbon (BrC) formation are not well understood, nor are the spatial or temporal frequency of factors driving smoke particle evolution, such as hydration, coagulation, and oxidation, all of which impact smoke radiative forcing. In situ data from surface observation sites and aircraft field campaigns offer deep insight into the optical, chemical, and microphysical traits of biomass burning (BB) smoke aerosols, such as single scattering albedo (SSA) and size distribution, but cannot by themselves provide robust statistical characterization of both emitted and evolved particles. Data from the NASA Earth Observing System’s Multi-Angle Imaging SpectroRadiometer (MISR) instrument can provide at least a partial picture of BB particle properties and their evolution downwind, once properly validated. Here we use in situ data from the joint NOAA/NASA 2019 Fire Influence on Regional to Global Environments Experiment-Air Quality (FIREX-AQ) field campaign to assess the strengths and limitations of MISR-derived constraints on particle size, shape, light-absorption, and its spectral slope, as well as plume height and associated wind vectors. Based on the satellite observations, we also offer inferences about aging mechanisms effecting downwind particle evolution, such as gravitational settling, oxidation, secondary particle formation, and the combination of particle aggregation and condensational growth. This work builds upon our previous study, adding confidence to our interpretation of the remote-sensing data based on an expanded suite of in situ measurements for validation. The satellite and in situ measurements offer similar characterizations of particle property evolution as a function of smoke age for the 06 August Williams Flats Fire, and most of the key differences in particle size and absorption can be attributed to differences in sampling and changes in the plume geometry between sampling times. Whereas the aircraft data provide validation for the MISR retrievals, the satellite data offer a spatially continuous mapping of particle properties over the plume, which helps identify trends in particle property downwind evolution that are ambiguous in the sparsely sampled aircraft transects. The MISR data record is more than two decades long, offering future opportunities to study regional wildfire plume behavior statistically, where aircraft data are limited or entirely lacking.https://doi.org/10.3390/rs1222382

    Sources, seasonality, and trends of southeast US aerosol: An integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model

    No full text
    We use an ensemble of surface (EPA CSN, IMPROVE, SEARCH, AERONET), aircraft (SEAC4RS), and satellite (MODIS, MISR) observations over the southeast US during the summer–fall of 2013 to better understand aerosol sources in the region and the relationship between surface particulate matter (PM) and aerosol optical depth (AOD). The GEOS-Chem global chemical transport model (CTM) with 25 × 25 km2 resolution over North America is used as a common platform to interpret measurements of different aerosol variables made at different times and locations. Sulfate and organic aerosol (OA) are the main contributors to surface PM2.5 (mass concentration of PM finer than 2.5 ÎŒm aerodynamic diameter) and AOD over the southeast US. OA is simulated successfully with a simple parameterization, assuming irreversible uptake of low-volatility products of hydrocarbon oxidation. Biogenic isoprene and monoterpenes account for 60 % of OA, anthropogenic sources for 30 %, and open fires for 10 %. 60 % of total aerosol mass is in the mixed layer below 1.5 km, 25 % in the cloud convective layer at 1.5–3 km, and 15 % in the free troposphere above 3 km. This vertical profile is well captured by GEOS-Chem, arguing against a high-altitude source of OA. The extent of sulfate neutralization (f = [NH4+]/(2[SO42−] + [NO3−]) is only 0.5–0.7 mol mol−1 in the observations, despite an excess of ammonia present, which could reflect suppression of ammonia uptake by OA. This would explain the long-term decline of ammonium aerosol in the southeast US, paralleling that of sulfate. The vertical profile of aerosol extinction over the southeast US follows closely that of aerosol mass. GEOS-Chem reproduces observed total column aerosol mass over the southeast US within 6 %, column aerosol extinction within 16 %, and space-based AOD within 8–28 % (consistently biased low). The large AOD decline observed from summer to winter is driven by sharp declines in both sulfate and OA from August to October. These declines are due to shutdowns in both biogenic emissions and UV-driven photochemistry. Surface PM2.5 shows far less summer-to-winter decrease than AOD and we attribute this in part to the offsetting effect of weaker boundary layer ventilation. The SEAC4RS aircraft data demonstrate that AODs measured from space are consistent with surface PM2.5. This implies that satellites can be used reliably to infer surface PM2.5 over monthly timescales if a good CTM representation of the aerosol vertical profile is available.ISSN:1680-7375ISSN:1680-736
    corecore