32 research outputs found

    Dynamic DNA methylation across diverse human cell lines and tissues

    Get PDF
    As studies of DNA methylation increase in scope, it has become evident that methylation has a complex relationship with gene expression, plays an important role in defining cell types, and is disrupted in many diseases. We describe large-scale single-base resolution DNA methylation profiling on a diverse collection of 82 human cell lines and tissues using reduced representation bisulfite sequencing (RRBS). Analysis integrating RNA-seq and ChIP-seq data illuminates the functional role of this dynamic mark. Loci that are hypermethylated across cancer types are enriched for sites bound by NANOG in embryonic stem cells, which supports and expands the model of a stem/progenitor cell signature in cancer. CpGs that are hypomethylated across cancer types are concentrated in megabase-scale domains that occur near the telomeres and centromeres of chromosomes, are depleted of genes, and are enriched for cancer-specific EZH2 binding and H3K27me3 (repressive chromatin). In noncancer samples, there are cell-type specific methylation signatures preserved in primary cell lines and tissues as well as methylation differences induced by cell culture. The relationship between methylation and expression is context-dependent, and we find that CpG-rich enhancers bound by EP300 in the bodies of expressed genes are unmethylated despite the dense gene-body methylation surrounding them. Non-CpG cytosine methylation occurs in human somatic tissue, is particularly prevalent in brain tissue, and is reproducible across many individuals. This study provides an atlas of DNA methylation across diverse and well-characterized samples and enables new discoveries about DNA methylation and its role in gene regulation and disease

    Intra-tumor heterogeneity of MLH1 promoter methylation revealed by deep single molecule bisulfite sequencing

    Get PDF
    A single tumor may contain cells with different somatic mutations. By characterizing this genetic heterogeneity within tumors, advances have been made in the prognosis, treatment and understanding of tumorigenesis. In contrast, the extent of epigenetic intra-tumor heterogeneity and how it influences tumor biology is under-explored. We have characterized epigenetic heterogeneity within individual tumors using next-generation sequencing. We used deep single molecule bisulfite sequencing and sample-specific DNA barcodes to determine the spectrum of MLH1 promoter methylation across an average of 1000 molecules in each of 33 individual samples in parallel, including endometrial cancer, matched blood and normal endometrium. This first glimpse, deep into each tumor, revealed unexpectedly heterogeneous patterns of methylation at the MLH1 promoter within a subset of endometrial tumors. This high-resolution analysis allowed us to measure the clonality of methylation in individual tumors and gain insight into the accumulation of aberrant promoter methylation on both alleles during tumorigenesis

    TBCRC 019: A phase II trial of nanoparticle albumin-bound paclitaxel with or without the anti-death receptor 5 monoclonal antibody tigatuzumab in patients with triple negative breast cancer

    Get PDF
    Purpose: Tigatuzumab (TIG), an agonistic anti-DR5 antibody, triggers apoptosis in DR5+ human tumor cells without crosslinking. TIG has strong in vitro/in vivo activity against basal-like breast cancer cells enhanced by chemotherapy agents. This study evaluates activity of TIG and chemotherapy in patients with metastatic triple-negative breast cancer (TNBC). Experimental Design: Randomized 2:1 phase II trial of albumin-bound paclitaxel (nab-PAC) ± TIG in patients with TNBC stratified by prior chemotherapy. Patients received nab-PAC weekly × 3 ± TIG every other week, every 28 days. Primary objective was within-arm objective response rate (ORR). Secondary objectives were safety, progression-free survival (PFS), clinical benefit, and TIG immunogenicity. Metastatic research biopsies were required. Results: Among 64 patients (60 treated; TIG/nab-PAC n = 39 and nab-PAC n = 21), there were 3 complete remissions (CR), 8 partial remissions (PR; 1 almost CR), 11 stable diseases (SD), and 17 progressive diseases (PD) in the TIG/nab-PAC arm (ORR, 28%), and no CRs, 8 PRs, 4 SDs, and 9 PDs in the nab-PAC arm (ORR, 38%). There was a numerical increase in CRs and several patients had prolonged PFS (1,025+, 781, 672, 460, 334) in the TIG/nab-PAC arm. Grade 3 toxicities were 28% and 29%, respectively, with no grade 4–5. Exploratory analysis suggests an association of ROCK1 gene pathway activation with efficacy in the TIG/nab-PAC arm. Conclusions: ORR and PFS were similar in both. Preclinical activity of TIG in basal-like breast cancer and prolonged PFS in few patients in the combination arm support further investigation of anti-DR5 agents. ROCK pathway activation merits further evaluation

    Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial

    Get PDF
    Background Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear. Methods RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047. Findings Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths. Interpretation Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population

    Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial

    Get PDF
    Background Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain. Methods RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov , NCT00541047 . Findings Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths. Interpretation Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy. Funding Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society

    TBCRC 002: A phase II, randomized, open-label trial of preoperative letrozole with or without bevacizumab in postmenopausal women with newly diagnosed stage 2/3 hormone receptor-positive and HER2-negative breast cancer.

    No full text
    Background: In preclinical studies, the expression of vascular endothelial growth factor (VEGF) in hormone receptor-positive breast cancer is associated with estrogen-independent tumor growth and resistance to endocrine therapies. This study investigated whether the addition of bevacizumab, a monoclonal antibody against VEGF, to letrozole enhanced the antitumor activity of the letrozole in the preoperative setting. Methods: Postmenopausal women with newly diagnosed stage 2 or 3 estrogen and/or progesterone receptor-positive, HER2-negative breast cancer were randomly assigned (2:1) between letrozole 2.5 mg PO daily plus bevacizumab 15 mg/kg IV every 3 weeks (Let/Bev) and letrozole 2.5 mg PO daily (Let) for 24 weeks prior to definitive surgery. Primary objective was within-arm pathologic complete remission (pCR) rate. Secondary objectives were safety, objective response, and downstaging rate. Results: Seventy-five patients were randomized (Let/Bev n = 50, Let n = 25). Of the 45 patients evaluable for pathological response in the Let/Bev arm, 5 (11%; 95% CI, 3.7-24.1%) achieved pCR and 4 (9%; 95% CI, 2.5-21.2%) had microscopic residual disease; no pCRs or microscopic residual disease was seen in the Let arm (0%; 95% CI, 0-14.2%). The rates of downstaging were 44.4% (95% CI, 29.6-60.0%) and 37.5% (95% CI, 18.8-59.4%) in the Let/Bev and Let arms, respectively. Adverse events typically associated with letrozole (hot flashes, arthralgias, fatigue, myalgias) occurred in similar frequencies in the two arms. Hypertension, headache, and proteinuria were seen exclusively in the Let/Bev arm. The rates of grade 3 and 4 adverse events and discontinuation due to adverse events were 18% vs 8% and 16% vs none in the Let/Bev and Let arms, respectively. A small RNA-based classifier predictive of response to preoperative Let/Bev was developed and confirmed on an independent cohort. Conclusion: In the preoperative setting, the addition of bevacizumab to letrozole was associated with a pCR rate of 11%; no pCR was seen with letrozole alone. There was additive toxicity with the incorporation of bevacizumab. Responses to Let/Bev can be predicted from the levels of 5 small RNAs in a pretreatment biopsy

    Intra-tumor heterogeneity of MLH1 promoter

    No full text
    methylation revealed by deep single molecule bisulfite sequencin

    TXNIP loss expands Myc-dependent transcriptional programs by increasing Myc genomic binding.

    Get PDF
    The c-Myc protooncogene places a demand on glucose uptake to drive glucose-dependent biosynthetic pathways. To meet this demand, c-Myc protein (Myc henceforth) drives the expression of glucose transporters, glycolytic enzymes, and represses the expression of thioredoxin interacting protein (TXNIP), which is a potent negative regulator of glucose uptake. A Mychigh/TXNIPlow gene signature is clinically significant as it correlates with poor clinical prognosis in triple-negative breast cancer (TNBC) but not in other subtypes of breast cancer, suggesting a functional relationship between Myc and TXNIP. To better understand how TXNIP contributes to the aggressive behavior of TNBC, we generated TXNIP null MDA-MB-231 (231:TKO) cells for our study. We show that TXNIP loss drives a transcriptional program that resembles those driven by Myc and increases global Myc genome occupancy. TXNIP loss allows Myc to invade the promoters and enhancers of target genes that are potentially relevant to cell transformation. Together, these findings suggest that TXNIP is a broad repressor of Myc genomic binding. The increase in Myc genomic binding in the 231:TKO cells expands the Myc-dependent transcriptome we identified in parental MDA-MB-231 cells. This expansion of Myc-dependent transcription following TXNIP loss occurs without an apparent increase in Myc's intrinsic capacity to activate transcription and without increasing Myc levels. Together, our findings suggest that TXNIP loss mimics Myc overexpression, connecting Myc genomic binding and transcriptional programs to the nutrient and progrowth signals that control TXNIP expression
    corecore