9 research outputs found

    Advanced Functional Tumor Imaging and Precision Nuclear Medicine Enabled by Digital PET Technologies

    No full text
    The purpose of this article is to provide a brief overview of the background, basic principles, technological evolution, clinical capabilities, and future directions for functional tumor imaging as PET evolves from the conventional photomultiplier tube-based platform into a fully digital detector acquisition platform. The recent introduction of solid-state digital photon counting PET detector is the latest evolution of clinical PET which enables faster time-of-flight timing resolution that leads to more precise localization of the annihilation events and further contributes to reduction in partial volume and thus makes high definition and ultrahigh definition PET imaging feasible with current standard acquisition procedures. The technological advances of digital PET can be further leveraged by optimizing many of the acquisition and reconstruction methodologies to achieve faster image acquisition to improve cancer patient throughput, lower patient dose in accordance with ALARA, and improved quantitative accuracy to enable biomarker capability. Digital PET technology will advance molecular imaging capabilities beyond oncology and enable Precision Nuclear Medicine

    Enhancing patient experience with internet protocol addressable digital light-emitting diode lighting in imaging environments: A phase i study

    No full text
    Background: Conventional approaches to improve the quality of clinical patient imaging studies focus predominantly on updating or replacing imaging equipment; however, it is often not considered that patients can also highly influence the diagnostic quality of clinical imaging studies. Patient-specific artifacts can limit the diagnostic image quality, especially when patients are uncomfortable, anxious, or agitated. Imaging facility or environmental conditions can also influence the patient\u27s comfort and willingness to participate in diagnostic imaging studies, especially when performed in visually unesthetic, anxiety-inducing, and technology-intensive imaging centers. When given the opportunity to change a single aspect of the environmental or imaging facility experience, patients feel much more in control of the otherwise unfamiliar and uncomfortable setting. Incorporating commercial, easily adaptable, ambient lighting products within clinical imaging environments allows patients to individually customize their environment for a more personalized and comfortable experience. Objective: The aim of this pilot study was to use a customizable colored light-emitting diode (LED) lighting system within a clinical imaging environment and demonstrate the feasibility and initial findings of enabling healthy subjects to customize the ambient lighting and color. Improving the patient experience within clinical imaging environments with patient-preferred ambient lighting and color may improve overall patient comfort, compliance, and participation in the imaging study and indirectly contribute to improving diagnostic image quality. Methods: We installed consumer-based internet protocol addressable LED lights using the ZigBee standard in different imaging rooms within a clinical imaging environment. We recruited healthy volunteers (n=35) to generate pilot data in order to develop a subsequent clinical trial. The visual perception assessment procedure utilized questionnaires with preprogrammed light/color settings and further assessed how subjects preferred ambient light and color within a clinical imaging setting. Results: Technical implementation using programmable LED lights was performed without any hardware or electrical modifications to the existing clinical imaging environment. Subject testing revealed substantial variabilities in color perception; however, clear trends in subject color preference were noted. In terms of the color hue of the imaging environment, 43% (15/35) found blue and 31% (11/35) found yellow to be the most relaxing. Conversely, 69% (24/35) found red, 17% (6/35) found yellow, and 11% (4/35) found green to be the least relaxing. Conclusions: With the majority of subjects indicating that colored lighting within a clinical imaging environment would contribute to an improved patient experience, we predict that enabling patients to customize environmental factors like lighting and color to individual preferences will improve patient comfort and patient satisfaction. Improved patient comfort in clinical imaging environments may also help to minimize patient-specific imaging artifacts that can otherwise limit diagnostic image quality

    Systemic Biodistribution and Intravitreal Pharmacokinetic Properties of Bevacizumab, Ranibizumab, and Aflibercept in a Nonhuman Primate Model

    No full text
    PURPOSE. To determine the intravitreal pharmacokinetic properties and to study the systemic biodistribution characteristics of 1-124-labeled bevacizumab, ranibizumab, and aflibercept with positron emission tomography-computed tomography (PET/CT) imaging in a nonhuman primate model. METHODS. Three groups with four owl monkeys per group underwent intravitreal injection with 1.25 mg/0.05 mL 1-124 bevacizumab, 0.5 mg/0.05 mL 1-124 ranibizumab, or 2.0 mg/0.05 mL 1-124 aflibercept in the right eye of each subject. All subjects were imaged using PET/CT on days 0, 1, 2, 4, 8, 14, 21, 28, and 35. Serum blood draws were performed at hours 1, 2, 4, 8, 12 and days 1, 2, 4, 8, 14, 21, 28, and 35. Radioactivity emission measurements were used to determine the intravitreal half-lives of each agent and to study the differences of radioactivity uptake in nonocular organs. RESULTS. The intravitreal half-lives were 3.60 days for 1-124 bevacizumab, 2.73 days for 1-124 ranibizumab, and 2.44 days for 1-124 aflibercept. Serum levels were highest and most prolonged for bevacizumab as compared to both ranibizumab and aflibercept. All agents were primarily excreted through the renal and mononuclear phagocyte systems. However, bevacizumab was also found in significantly higher levels in the liver, heart, and distal femur bones. CONCLUSIONS. Among the three anti-VEGF agents used in clinical practice, bevacizumab demonstrated the longest intravitreal retention time and aflibercept the shortest. Significantly higher and prolonged levels of bevacizumab were found in the serum as well as in the heart, liver, and distal bones. These differences may be considered by clinicians when formulating treatment algorithms for intravitreal therapies with these agents.Macular Degeneration Research Fund from the Department of Ophthalmology & Vision Science, University of Arizona Medical Center and Lions Clubs InternationalOpen access journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    A contact binary satellite of the asteroid (152830) Dinkinesh

    Get PDF
    Asteroids with diameters less than about 5 km have complex histories because they are small enough for radiative torques (that is, YORP, short for the Yarkovsky–O’Keefe–Radzievskii–Paddack effect)1 to be a notable factor in their evolution2. (152830) Dinkinesh is a small asteroid orbiting the Sun near the inner edge of the main asteroid belt with a heliocentric semimajor axis of 2.19 au; its S-type spectrum3, 4 is typical of bodies in this part of the main belt5. Here we report observations by the Lucy spacecraft6, 7 as it passed within 431 km of Dinkinesh. Lucy revealed Dinkinesh, which has an effective diameter of only 720 m, to be unexpectedly complex. Of particular note is the presence of a prominent longitudinal trough overlain by a substantial equatorial ridge and the discovery of the first confirmed contact binary satellite, now named (152830) Dinkinesh I Selam. Selam consists of two near-equal-sized lobes with diameters of 210 m and 230 m. It orbits Dinkinesh at a distance of 3.1 km with an orbital period of about 52.7 h and is tidally locked. The dynamical state, angular momentum and geomorphologic observations of the system lead us to infer that the ridge and trough of Dinkinesh are probably the result of mass failure resulting from spin-up by YORP followed by the partial reaccretion of the shed material. Selam probably accreted from material shed by this event

    Feasibility and metabolic outcomes of a well-formulated ketogenic diet as an adjuvant therapeutic intervention for women with stage IV metastatic breast cancer: The Keto-CARE trial.

    No full text
    PurposeKetogenic diets may positively influence cancer through pleiotropic mechanisms, but only a few small and short-term studies have addressed feasibility and efficacy in cancer patients. The primary goals of this study were to evaluate the feasibility and the sustained metabolic effects of a personalized well-formulated ketogenic diet (WFKD) designed to achieve consistent blood beta-hydroxybutyrate (βHB) >0.5 mM in women diagnosed with stage IV metastatic breast cancer (MBC) undergoing chemotherapy.MethodsWomen (n = 20) were enrolled in a six month, two-phase, single-arm WFKD intervention (NCT03535701). Phase I was a highly-supervised, ad libitum, personalized WFKD, where women were provided with ketogenic-appropriate food daily for three months. Phase II transitioned women to a self-administered WFKD with ongoing coaching for an additional three months. Fasting capillary βHB and glucose were collected daily; weight, body composition, plasma insulin, and insulin resistance were collected at baseline, three and six months.ResultsCapillary βHB indicated women achieved nutritional ketosis (Phase I mean: 0.8 mM (n = 15); Phase II mean: 0.7 mM (n = 9)). Body weight decreased 10% after three months, primarily from body fat. Fasting plasma glucose, plasma insulin, and insulin resistance also decreased significantly after three months (p ConclusionsWomen diagnosed with MBC undergoing chemotherapy can safely achieve and maintain nutritional ketosis, while improving body composition and insulin resistance, out to six months

    OSIRIS-APEX: An OSIRIS-REx Extended Mission to Asteroid Apophis

    No full text
    The Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) spacecraft mission characterized and collected a sample from asteroid (101955) Bennu. After the OSIRIS-REx Sample Return Capsule released to Earth’s surface in 2023 September, the spacecraft diverted into a new orbit that encounters asteroid (99942) Apophis in 2029, enabling a second mission with the same unique capabilities: OSIRIS–Apophis Explorer (APEX). On 2029 April 13, the 340 m diameter Apophis will draw within ∼32,000 km of Earth’s surface, less than 1/10 the lunar distance. Apophis will be the largest object to approach Earth this closely in recorded history. This rare planetary encounter will alter Apophis’s orbit, will subject it to tidal forces that change its spin state, and may seismically disturb its surface. APEX will distantly observe Apophis during the Earth encounter and capture its evolution in real time, revealing the consequences of an asteroid undergoing tidal disturbance by a major planet. Beginning in 2029 July, the spacecraft’s instrument suite will begin providing high-resolution data of this “stony” asteroid—advancing knowledge of these objects and their connection to meteorites. Near the mission’s end, APEX will use its thrusters to excavate regolith, a technique demonstrated at Bennu. Observations before, during, and after excavation will provide insight into the subsurface and material properties of stony asteroids. Furthermore, Apophis’s material and structure have critical implications for planetary defense
    corecore