88 research outputs found

    Clofazimine acid-base solubilization: influence of small organic acids’ concentration

    Get PDF
    Methods for drug solubilization have become important part of modern drug discovery and development due to increasing number of extremely insoluble drugs and drug candidates. One of such methods is acid-base supersolubilization (ABS) [1]. Clofazimine (CFZ) is weakly basic antibiotic and anti-inflammatory drug, most notably used in the treatment of leprosy and tuberculosis, with recently proven inhibitory activity against several coronaviruses [2]. We have recently unraveled its aqueous pKa value and its unique cosolvent dependence [3]. The aim of the present study was to investigate CFZ solubilization using the ABS approach. Eight small organic acids were tested for the ABS effect (glutaric, malic, tartaric, citric, malonic, maleic, succinic, adipic) but only glutaric (GA), malic (MA), and tartaric (TA) acids showed some solubilization effect. The effect of their concentration (and the solution pH value) was further tested. The solubility of CFZ was determined in GA, MA, and TA solutions in wide concentration (1.0×10-2 – 5.0 M) and pH range (~0.2 – 4.8). Equilibration time was 24 hours (6 h of stirring + 18 h of sedimentation). Phases were separated by filtration. The CFZ concentration in supernatant was determined by HPLC-UV/VIS. Results show that CFZ solubility increases as acid concentration increases: from 3.04×10-3 to 10.68 mg/mL (in GA), from 9.06×10-3 to 1.23 mg/mL (in MA) and from 4.76×10-3 to 0.32 mg/mL (in TA). The effect of CFZ solubilization is much more pronounced when the acid concentration is raised above 2 M. These results can be used as the basis for further CFZ formulation optimization. Furthermore, our ongoing research is focused on the type of interactions and other possible factors that can influence CFZ and other prectically insoluble drugs, embracing (super)solubilization as a general methodology in drug design and development

    Clofazimine acid-base solubilization: influence of small organic acids’ concentration

    Get PDF
    Methods for drug solubilization have become important part of modern drug discovery and development due to increasing number of extremely insoluble drugs and drug candidates. One of such methods is acid-base supersolubilization (ABS) [1]. Clofazimine (CFZ) is weakly basic antibiotic and anti-inflammatory drug, most notably used in the treatment of leprosy and tuberculosis, with recently proven inhibitory activity against several coronaviruses [2]. We have recently unraveled its aqueous pKa value and its unique cosolvent dependence [3]. The aim of the present study was to investigate CFZ solubilization using the ABS approach. Eight small organic acids were tested for the ABS effect (glutaric, malic, tartaric, citric, malonic, maleic, succinic, adipic) but only glutaric (GA), malic (MA), and tartaric (TA) acids showed some solubilization effect. The effect of their concentration (and the solution pH value) was further tested. The solubility of CFZ was determined in GA, MA, and TA solutions in wide concentration (1.0×10-2 – 5.0 M) and pH range (~0.2 – 4.8). Equilibration time was 24 hours (6 h of stirring + 18 h of sedimentation). Phases were separated by filtration. The CFZ concentration in supernatant was determined by HPLC-UV/VIS. Results show that CFZ solubility increases as acid concentration increases: from 3.04×10-3 to 10.68 mg/mL (in GA), from 9.06×10-3 to 1.23 mg/mL (in MA) and from 4.76×10-3 to 0.32 mg/mL (in TA). The effect of CFZ solubilization is much more pronounced when the acid concentration is raised above 2 M. These results can be used as the basis for further CFZ formulation optimization. Furthermore, our ongoing research is focused on the type of interactions and other possible factors that can influence CFZ and other prectically insoluble drugs, embracing (super)solu bilization as a general methodology in drug design and development

    Revealing the story of an orphan drug: clofazimine speciation and solubilization as a function of pH

    Get PDF
    Since the introduction of combinatorial chemistry and high-throughput screening in drug discovery in the early 1990s, the solubility of new chemical entities (NCE) decreased drastically while their lipophilicities increased greatly. Characterizing physicochemical properties of low soluble molecules can be especially challenging, since such molecules can undergo complicated reactions in aqueous solution, such as forming precipitates or complexes with buffer species or undergoing self-aggregation (dimer, trimer, etc.) or micelle formations. Most drugs are ionizable. Foremost to the rational interpretation of solution behavior of ionizable drugs in a physiologically-relevant pH domain requires an accurate aqueous pKa, determined by a suitable method. In a pH-dependent measurement of a property (e.g. solubility-, lipophilicity-, permeability-pH), when the apparent pKa value is different from the true aqueous pKa value, it may be an early clue that nonideal solution behavior may be taking place. In pharmaceutical research, it may seem cost-effective to use calculated pKa instead of measured values, but paradoxically, such preference can lead to inaccurate rationalization of the pH-dependent behavior of the drug molecule. For simple molecules, calculated values can be useful, but for today’s new drugs or for molecules prone to complicated solution behavior, the use of calculated pKas can substantially wrench the interpretation of solution properties. Clofazimine (CFZ), although discovered about 66 years ago, and used therapeutically for nearly 40 years, exhibits some of the properties of relatively recent drug molecules by being extremely water insoluble and having variable pKa values reported. We have recently combined potentiometric titrations and UV/Vis spectrophotometry in methanol-water cosolvent media, accompanied by DFT calculations, to assess the hypothesis of CFZ free base dimerization. We reasoned that a soluble dimer might form from drug-drug adhesion along the hydrophobic molecular surface. With lessened exposure of the hydrophobic surface to water, the dimer would be more water soluble than the monomeric free base. In saturated solutions, the apparent solubility in alkaline pH would be elevated due to the presence of the dimer. The effect of that would be a lower pKa and reverse pKa cosolvent dependence – the behaviour we have noticed in CFZ aqueous solutions. These findings are of paramount importance for understanding of CFZ speciation and the future progress in developing its improved formulations which is the subject of our ongoing studies

    Revealing the story of an orphan drug: clofazimine speciation and solubilization as a function of pH

    Get PDF
    Since the introduction of combinatorial chemistry and high-throughput screening in drug discovery in the early 1990s, the solubility of new chemical entities (NCE) decreased drastically while their lipophilicities increased greatly. Characterizing physicochemical properties of low soluble molecules can be especially challenging, since such molecules can undergo complicated reactions in aqueous solution, such as forming precipitates or complexes with buffer species or undergoing self-aggregation (dimer, trimer, etc.)1,2 or micelle formations. Most drugs are ionizable. Foremost to the rational interpretation of solution behavior of ionizable drugs in a physiologically-relevant pH domain requires an accurate aqueous pKa, determined by a suitable method. In a pH-dependent measurement of a property (e.g. solubility-, lipophilicity-, permeability-pH), when the apparent pKa value is different from the true aqueous pKa value, it may be an early clue that nonideal solution behavior may be taking place. In pharmaceutical research, it may seem cost-effective to use calculated pKa instead of measured values, but paradoxically, such preference can lead to inaccurate rationalization of the pH-dependent behavior of the drug molecule. For simple molecules, calculated values can be useful, but for today’s new drugs or for molecules prone to complicated solution behavior, the use of calculated pKas can substantially wrench the interpretation of solution properties. Clofazimine (CFZ), although discovered about 66 years ago, and used therapeutically for nearly 40 years, exhibits some of the properties of relatively recent drug molecules by being extremely water insoluble and having variable pKa values reported. We have recently combined potentiometric titrations and UV/Vis spectrophotometry in methanol-water cosolvent media, accompanied by DFT calculations, to assess the hypothesis of CFZ free base dimerization. We reasoned that a soluble dimer might form from drug-drug adhesion along the hydrophobic molecular surface. With lessened exposure of the hydrophobic surface to water, the dimer would be more water soluble than the monomeric free base. In saturated solutions, the apparent solubility in alkaline pH would be elevated due to the presence of the dimer. The effect of that would be a lower pKa and reverse pKa cosolvent dependence – the behaviour we have noticed in CFZ aqueous solutions. These findings are of paramount importance for understanding of CFZ speciation and the future progress in developing its improved formulations which is the subject of our ongoing studies

    Effect of ABCG2/BCRP Expression on Efflux and Uptake of Gefitinib in NSCLC Cell Lines

    Get PDF
    BCRP/ABCG2 emerged as an important multidrug resistance protein, because it confers resistance to several classes of cancer chemotherapeutic agents and to a number of novel molecularly-targeted therapeutics such as tyrosine kinase inhibitors. Gefitinib is an orally active, selective EGFR tyrosine kinase inhibitor used in the treatment of patients with advanced non small cell lung cancer (NSCLC) carrying activating EGFR mutations. Membrane transporters may affect the distribution and accumulation of gefitinib in tumour cells; in particular a reduced intracellular level of the drug may result from poor uptake, enhanced efflux or increased metabolism

    <i>ABCB1</i> (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells

    Get PDF
    BACKGROUND: Clinical response to chemotherapy for ovarian cancer is frequently compromised by the development of drug-resistant disease. The underlying molecular mechanisms and implications for prescription of routinely prescribed chemotherapy drugs are poorly understood. METHODS: We created novel A2780-derived ovarian cancer cell lines resistant to paclitaxel and olaparib following continuous incremental drug selection. MTT assays were used to assess chemosensitivity to paclitaxel and olaparib in drug-sensitive and drug-resistant cells±the ABCB1 inhibitors verapamil and elacridar and cross-resistance to cisplatin, carboplatin, doxorubicin, rucaparib, veliparib and AZD2461. ABCB1 expression was assessed by qRT-PCR, copy number, western blotting and immunohistochemical analysis and ABCB1 activity assessed by the Vybrant and P-glycoprotein-Glo assays. RESULTS: Paclitaxel-resistant cells were cross-resistant to olaparib, doxorubicin and rucaparib but not to veliparib or AZD2461. Resistance correlated with increased ABCB1 expression and was reversible following treatment with the ABCB1 inhibitors verapamil and elacridar. Active efflux of paclitaxel, olaparib, doxorubicin and rucaparib was confirmed in drug-resistant cells and in ABCB1-expressing bacterial membranes. CONCLUSIONS: We describe a common ABCB1-mediated mechanism of paclitaxel and olaparib resistance in ovarian cancer cells. Optimal choice of PARP inhibitor may therefore limit the progression of drug-resistant disease, while routine prescription of first-line paclitaxel may significantly limit subsequent chemotherapy options in ovarian cancer patients

    Cancer stem cell metabolism: A potential target for cancer therapy

    Get PDF
    © 2016 The Author(s). Cancer Stem cells (CSCs) are a unipotent cell population present within the tumour cell mass. CSCs are known to be highly chemo-resistant, and in recent years, they have gained intense interest as key tumour initiating cells that may also play an integral role in tumour recurrence following chemotherapy. Cancer cells have the ability to alter their metabolism in order to fulfil bio-energetic and biosynthetic requirements. They are largely dependent on aerobic glycolysis for their energy production and also are associated with increased fatty acid synthesis and increased rates of glutamine utilisation. Emerging evidence has shown that therapeutic resistance to cancer treatment may arise due to dysregulation in glucose metabolism, fatty acid synthesis, and glutaminolysis. To propagate their lethal effects and maintain survival, tumour cells alter their metabolic requirements to ensure optimal nutrient use for their survival, evasion from host immune attack, and proliferation. It is now evident that cancer cells metabolise glutamine to grow rapidly because it provides the metabolic stimulus for required energy and precursors for synthesis of proteins, lipids, and nucleic acids. It can also regulate the activities of some of the signalling pathways that control the proliferation of cancer cells. This review describes the key metabolic pathways required by CSCs to maintain a survival advantage and highlights how a combined approach of targeting cellular metabolism in conjunction with the use of chemotherapeutic drugs may provide a promising strategy to overcome therapeutic resistance and therefore aid in cancer therapy

    Insights into the management of Wilson’s disease

    No full text
    Wilson’s disease is a rare, inherited autosomal recessive disease of copper metabolism, in which the causative gene, ATP7B , results in absent or reduced function of the ATP7B transporter important for biliary excretion of copper and incorporation of copper into caeruloplasmin. Affected patients accumulate excessive copper within the liver, brain and other tissues. A disease mainly of children, adolescents and young adults; clinical features vary from the asymptomatic state to chronic liver disease, acute liver failure, and neuropsychiatric manifestations. Diagnosis requires a high index of suspicion and is based on a combination of clinical signs, biochemical tests, hepatic copper content assay and mutation analysis of the ATP7B gene; to date, there are more than 500 mutations of ATP7B in patients with Wilson’s disease. Early recognition and treatment can result in an excellent prognosis whereas untreated disease is almost always fatal. Drug therapies include chelating agents, such as penicillamine or trientine, and zinc salts. Liver transplantation is curative correcting the underlying pathophysiology and is traditionally indicated in acute liver failure or end-stage liver disease refractory to medical therapy. This review provides an overview of various aspects of Wilson’s disease including molecular basis of the disease, clinical features, diagnostic and management strategies with their current limitations

    A Performance Comparison of Anaerobic and an Integrated Anaerobic-Aerobic Biological Reactor System for the Effective Treatment of Textile Wastewater

    No full text
    The accumulation of recalcitrant azo dyes from untreated textile effluents has adversely impacted the ecosystem. The immense stability in their nature is conferred by the presence of azo bonds (N=N) in their structure. The reduction of this azo bond occurs exclusively under anaerobic conditions giving rise to colorless aromatic amines, which are carcinogenic. In the present study, a synthetic textile effluent containing mixed azo dyes such as Reactive Red, Reactive Black, and Reactive Brown, was treated using activated sludge under anaerobic conditions in a lab-scale anaerobic sequential batch reactor (An-SBR). At a concentration of 100 mg/L of mixed azo dyes, the An-SBR gave a maximum of 88% decolorization detected through UV-visible spectroscopy. Physicochemical analyses revealed 73% removal of BOD, 90% TDS removal, 69% COD removal, 4.05% TKN removal, 66% chloride removal, and 73% hardness removal. When the concentration of dyes was increased to 500 mg/L, the treatment showed a decrease in decolorization efficiency. This was then compared to a sequential anaerobic-aerobic treatment process performed in An-SBR and a laboratory-scale aerobic moving bed biofilm reactor (MBBR). The study revealed that the sequential process held more potential for commercial application than exclusively an anaerobic process. The metabolites formed during the treatment phase were extracted and analyzed by FT-IR and HPLC and identified through GC-MS analyses and were compared to those found in the untreated effluent. A phytotoxicity test was conducted on the remainder (secondary) sludge using Vigna unguiculata, and it was found to show a 50% reduction in germination and retardation in root and shoot length
    • …
    corecore