6 research outputs found

    Influence of the amount of co-infused amino acids on post-therapeutic potassium levels in peptide receptor radionuclide therapy

    Get PDF
    Background Peptide receptor radionuclide therapy (PRRT) is routinely used for advanced or metastasized neuroendocrine tumours (NET). To prevent nephrotoxicity, positively charged amino acids (AA) are co-infused. The aim of this study was to correlate the risk for therapy-related hyperkalaemia with the total amount of AA infused. Methods Twenty-two patients undergoing PRRT with standard activities of 177Lu-DOTATATE/-TOC were monitored during two following treatment cycles with co-infusion of 75 and 50 g of AA (L-arginine and L-lysine), respectively. Mean serum levels of potassium and other parameters (glomerular filtration rate [GFR], creatinine, blood urea nitrogen [BUN], phosphate, chloride, lactate dehydrogenase) prior to, 4 h and 24 h after AA infusion were compared. Results Self-limiting hyperkalaemia (>5.0 mmol/l) resolving after 24 h occurred in 91% (20/22) of patients in both protocols. Potassium levels, BUN, creatinine, GFR, phosphate, chloride and LDH showed a similar range at 4 h after co-infusion of 75 or 50 g of AA, respectively (p > 0.05). Only GFR and creatinine levels at 24 h varied significantly between the two co-infusion protocols (p < 0.05). Conclusions Hyperkalaemia is a frequent side effect of AA infusion in PRRT. Varying the dose of co-infused amino acids did not impact on the incidence and severity of hyperkalaemia

    Prediction of clinically relevant hyperkalemia in patients treated with peptide receptor radionuclide therapy

    Get PDF
    Background Peptide receptor radionuclide therapy (PRRT) is applied in patients with advanced neuroendocrine tumors. Co-infused amino acids (AA) should prevent nephrotoxicity. The aims of this study were to correlate the incidence of AA-induced hyperkalemia (HK) (≥5.0 mmol/l) and to identify predictors of AA-induced severe HK (>6.0). Methods In 38 patients, standard activity of 177Lu^{177}Lu-labelled somatostatin analogs was administered. Pre-therapeutic kidney function was assessed by renal scintigraphy and laboratory tests. For kidney protection, AA was co-infused. Biochemical parameters (potassium, glomerular filtration rate, creatinine, blood urea nitrogen (BUN), sodium, phosphate, chloride, and lactate dehydrogenase (LDH)) were obtained prior to 4 and 24 h after the AA infusion. Incidence of HK (≥5.0) was correlated with pre-therapeutic kidney function and serum parameters. Formulas for the prediction of severe hyperkalemia (>6.0) were computed and prospectively validated. Results At 4 h, HK (≥5.0) was present in 94.7% with severe HK (>6.0) in 36.1%. Values normalized after 24 h in 84.2%. Pre-therapeutic kidney function did not correlate with the incidence of severe HK. Increases in K+ were significantly correlated with decreases in phosphate (r = −0.444, p 28 mg/dl had a sensitivity of 84.6% and a specificity of 60.0% (AUC = 0.75) in predicting severe HK of >6.0 (phosphate, AUC = 0.37). Computing of five standard serum parameters (potassium, BUN, sodium, phosphate, LDH) resulted in a sensitivity of 88.9% and a specificity of 79.3% for the prediction of severe HK >6.0 (accuracy = 81.6%). Conclusions A combination of serum parameters predicted prospectively the occurrence of relevant HK with an accuracy of 81.6% underlining its potential utility for identifying ‘high-risk’ patients prone to PRRT

    Refractory Epstein-Barr Virus (EBV)-related post-transplant lymphoproliferative disease

    No full text
    Post-transplant lymphoproliferative disease (PTLD) represents a serious complication following allogeneic hematopoietic stem cell transplantation (alloHSCT). Previously, survival rates of PTLD have improved due to the introduction of rituximab. However, reports on curative management of refractory PTLD are scarce. Today, there is no consensus how to treat rituximab-refractory PTLD, especially in highly aggressive disease. Here, we describe successful management of refractory EBV-associated PTLD, specifically DLBCL, with combined brentuximab vedotin and third-party EBV-specific T-cells in a multidisciplinary treatment approach
    corecore