23 research outputs found

    Onset and progression of diabetes in kidney transplant patients receiving everolimus or cyclosporine therapy: an analysis of two randomized, multicenter trials

    Get PDF
    Background: Conversion from calcineurin inhibitor (CNI) therapy to a mammalian target of rapamycin (mTOR) inhibitor following kidney transplantation may help to preserve graft function. Data are sparse, however, concerning the impact of conversion on posttransplant diabetes mellitus (PTDM) or the progression of pre-existing diabetes. Methods: PTDM and other diabetes-related parameters were assessed post hoc in two large open-label multicenter trials. Kidney transplant recipients were randomized (i) at month 4.5 to switch to everolimus or remain on a standard cyclosporine (CsA)-based regimen (ZEUS, n = 300), or (ii) at month 3 to switch to everolimus, remain on standard CNI therapy or convert to everolimus with reduced-exposure CsA (HERAKLES, n = 497). Results: There were no significant differences in the incidence of PTDM between treatment groups (log rank p = 0.97 [ZEUS], p = 0.90 [HERAKLES]). The mean change in random blood glucose from randomization to month 12 was also similar between treatment groups in both trials for patients with or without PTDM, and with or without pre-existing diabetes. The change in eGFR from randomization to month 12 showed a benefit for everolimus versus comparator groups in all subpopulations, but only reached significance in larger subgroups (no PTDM or no pre-existing diabetes). Conclusions: Within the restrictions of this post hoc analysis, including non-standardized diagnostic criteria and limited glycemia laboratory parameters, these data do not indicate any difference in the incidence or severity of PTDM with early conversion from a CsA-based regimen to everolimus, or in the progression of pre-existing diabetes. Trial registration: clinicaltrials.gov , NCT00154310 (registered September 2005) and NCT00514514 (registered August 2007); EudraCT ( 2006-007021-32 and 2004-004346-40 )

    Storage duration of human blood samples for fatty acid concentration analyses - How long is too long?

    No full text
    Polyunsaturated fatty acids such as DHA have known anti-inflammatory properties. The therapeutic implication highlights the importance of accurate serum measurements. Sample preservation is challenging when performed parallel to the clinical obligations. Impact of time between sample collection and processing regarding concentration alterations of fatty acids in human blood remains to be elucidated. Therefore, more information is required with respect to the stability and storage options in the context of potential degradation and concentration changes. This study investigates the stability of DHA in serum samples over time, given the challenges of timely sample analysis in clinical settings. Blood samples from three patients were collected and stored at +4 °C. Concentrations were analysed between 6 h and 7 days post-collection. Our data indicate that DHA concentrations remained unchanged during the observational period. Our results suggest that storage duration up to 7 days before sample processing does not affect accuracy of the results. DHA measurements is crucial for ongoing and future research in cardiovascular and inflammatory diseases. Our results reveal that DHA stability remains consistent over one week. This information is important for further clinical studies investigating PUFA concentrations, providing researches the option to postpone processing of samples if required along the clinical obligations

    Comparison of stroke volumes assessed by three-dimensional echocardiography and transpulmonary thermodilution in a pediatric animal model

    No full text
    To compare stroke volumes (SV) in small hearts assessed by real-time three-dimensional echocardiography (3DE) with SV measured by transpulmonary thermodilution (TPTD) and continuous pulse contour analysis (PC) under various hemodynamic conditions. In thirteen anesthetized piglets (range 3.6-7.1 kg) SV were measured by 3DE, TPTD and PC at baseline and during phenylephrine and esmolol administration. 3DE and TPTD measurements were done successively while SV calculated by PC was documented at the time of 3DE. 3DE and TPTD showed a good correlation (r(2) = 0.74) and a bias of -1.3 ml (limits of agreement -4.1 to 1.5 ml). While TPTD measured higher SV than 3DE, both methods tracked SV changes with a concordance rate of 91 %. PC and 3DE showed a lower correlation coefficient of r(2) = 0.57 and a bias of -2.1 ml (limits of agreement -5.9 to 1.8 ml). Inter- and intra-observer variability of SV measured by 3DE was good with a mean bias < 5 %. SV3DE showed a small variance and tracked acute small changes in SV in acceptable concordance with TPTD. PC measured SV with a higher variance and mean difference compared to 3DE. In an experimental setting 3DE has the possibility to offer non-invasive assessments of ventricular volumes volume changes. To determine whether 3DE could be used for SV assessment in a clinical routine our results need confirmation in a clinical setting

    Fatty Acid Amide Hydrolase Deficiency Is Associated with Deleterious Cardiac Effects after Myocardial Ischemia and Reperfusion in Mice

    No full text
    Ischemic cardiomyopathy leads to inflammation and left ventricular (LV) dysfunction. Animal studies provided evidence for cardioprotective effects of the endocannabinoid system, including cardiomyocyte adaptation, inflammation, and remodeling. Cannabinoid type-2 receptor (CB2) deficiency led to increased apoptosis and infarctions with worsened LV function in ischemic cardiomyopathy. The aim of our study was to investigate a possible cardioprotective effect of endocannabinoid anandamide (AEA) after ischemia and reperfusion (I/R). Therefore, fatty acid amide hydrolase deficient (FAAH)−/− mice were subjected to repetitive, daily, 15 min, left anterior descending artery (LAD) occlusion over 3 and 7 consecutive days. Interestingly, FAAH−/− mice showed stigmata such as enhanced inflammation, cardiomyocyte loss, stronger remodeling, and persistent scar with deteriorated LV function compared to wild-type (WT) littermates. As endocannabinoids also activate PPAR-α (peroxisome proliferator-activated receptor), PPAR-α mediated effects of AEA were eliminated with PPAR-α antagonist GW6471 i.v. in FAAH−/− mice. LV function was assessed using M-mode echocardiography. Immunohistochemical analysis revealed apoptosis, macrophage accumulation, collagen deposition, and remodeling. Hypertrophy was determined by cardiomyocyte area and heart weight/tibia length. Molecular analyses involved Taqman® RT-qPCR and immune cells were analyzed with fluorescence-activated cell sorting (FACS). Most importantly, collagen deposition was reduced to WT levels when FAAH−/− mice were treated with GW6471. Chemokine ligand-2 (CCL2) expression was significantly higher in FAAH−/− mice compared to WT, followed by higher macrophage infiltration in infarcted areas, both being reversed by GW6471 treatment. Besides restoring antioxidative properties and contractile elements, PPAR-α antagonism also reversed hypertrophy and remodeling in FAAH−/− mice. Finally, FAAH−/−-mice showed more substantial downregulation of PPAR-α compared to WT, suggesting a compensatory mechanism as endocannabinoids are also ligands for PPAR-α, and its activation causes lipotoxicity leading to cardiomyocyte apoptosis. Our study gives novel insights into the role of endocannabinoids acting via PPAR-α. We hypothesize that the increase in endocannabinoids may have partially detrimental effects on cardiomyocyte survival due to PPAR-α activation

    3D Real-Time Echocardiography Combined with Mini Pressure Wire Generate Reliable Pressure-Volume Loops in Small Hearts

    Get PDF
    Background Pressure-volume loops (PVL) provide vital information regarding ventricular performance and pathophysiology in cardiac disease. Unfortunately, acquisition of PVL by conductance technology is not feasible in neonates and small children due to the available human catheter size and resulting invasiveness. The aim of the study was to validate the accuracy of PVL in small hearts using volume data obtained by real-time three-dimensional echocardiography (3DE) and simultaneously acquired pressure data. Methods In 17 piglets (weight range: 3.6-8.0 kg) left ventricular PVL were generated by 3DE and simultaneous recordings of ventricular pressure using a mini pressure wire (PVL3D). PVL3D were compared to conductance catheter measurements (PVLCond) under various hemodynamic conditions (baseline, alpha-adrenergic stimulation with phenylephrine, beta-adrenoreceptor- blockage using esmolol). In order to validate the accuracy of 3D volumetric data, cardiac magnetic resonance imaging (CMR) was performed in another 8 piglets. Results Correlation between CMR-and 3DE-derived volumes was good (enddiastolic volume: mean bias -0.03ml +/- 1.34ml). Computation of PVL3D in small hearts was feasible and comparable to results obtained by conductance technology. Bland-Altman analysis showed a low bias between PVL3D and PVLCond. Systolic and diastolic parameters were closely associated (Intraclass-Correlation Coefficient for: systolic myocardial elastance 0.95, arterial elastance 0.93, diastolic relaxation constant tau 0.90, indexed end-diastolic volume 0.98). Hemodynamic changes under different conditions were well detected by both methods (ICC 0.82 to 0.98). Inter-and intra-observer coefficients of variation were below 5% for all parameters. Conclusions PVL3D generated from 3DE combined with mini pressure wire represent a novel, feasible and reliable method to assess different hemodynamic conditions of cardiac function in hearts comparable to neonate and infant size. This methodology may be integrated into clinical practice and cardiac catheterization programs and has the capability to contribute to clinical decision making even in small hearts

    CX3CR1 is a prerequisite for the development of cardiac hypertrophy and left ventricular dysfunction in mice upon transverse aortic constriction.

    No full text
    The CX3CL1/CX3CR1 axis mediates recruitment and extravasation of CX3CR1-expressing subsets of leukocytes and plays a pivotal role in the inflammation-driven pathology of cardiovascular disease. The cardiac immune response differs depending on the underlying causes. This suggests that for the development of successful immunomodulatory therapy in heart failure due to chronic pressure overload induced left ventricular (LV) hypertrophy, the underlying immune patterns must be examined. Here, the authors demonstrate that Fraktalkine-receptor CX3CR1 is a prerequisite for the development of cardiac hypertrophy and left ventricular dysfunction in a mouse model of transverse aortic constriction (TAC). The comparison of C57BL/6 mice with CX3CR1 deficient mice displayed reduced LV hypertrophy and preserved cardiac function in response to pressure overload in mice lacking CX3CR1. Moreover, the normal immune response following TAC induced pressure overload which is dominated by Ly6Clow macrophages changed to an early pro-inflammatory immune response driven by neutrophils, Ly6Chigh macrophages and altered cytokine expression pattern in CX3CR1 deficient mice. In this early inflammatory phase of LV hypertrophy Ly6Chigh monocytes infiltrated the heart in response to a C-C chemokine ligand 2 burst. CX3CR1 expression impacts the immune response in the development of LV hypertrophy and its absence has clear cardioprotective effects. Hence, suppression of CX3CR1 may be an important immunomodulatory therapeutic target to ameliorate pressure-overload induced heart failure
    corecore