24 research outputs found

    Complement factors C3a and C5a mimick a proinflammatory microenvironment and increase HBV IGRA sensitivity

    No full text
    Abstract Background Hepatitis B virus (HBV) infections represent a global health problem and chronic hepatitis B (CHB) leads to liver cirrhosis and hepatocellular carcinoma. Thus, timely diagnosis of hepatitis B is crucial to ensure adequate treatment. We developed a powerful and rapid whole blood-based cytokine release assay assessing cellular immune responses to HBV antigens. IL-2 and IFNγ release in this assay depicts hepatitis B vaccination status. Of note, CHB goes along with elevated C5a concentrations in plasma. We aim at mimicking the proinflammatory microenvironment associated with HBV infection to enhance the diagnostic quality of our HBV specific cytokine release assay. We specifically investigated the potential of the complement factors C3a and C5a as costimulators and analyzed their potential effects on activation marker expression on T cells and antigen presenting cells. Results Whole blood from 87 healthy individuals (n = 59 hepatitis B vaccinated, n = 28 unvaccinated) was stimulated with HBV surface antigen (HBsAg) in presence or absence of C3a or C5a, respectively. Further, C3a and C5a were used in combination to investigate potential synergistic effects. IL-2 and IFNγ levels in plasma were quantified using ELISA. Complement factor C5a specifically enhances HBsAg-mediated IL-2 (690.3 ± 195.4 pg/ml vs. 789.4 ± 216.5 pg/ml) and IFNγ (146.0 ± 43.1 pg/ml vs. 336.7 ± 67.9 pg/ml) responses in whole blood. Similar cytokine levels were measured when both C3a and C5a were used. With a diagnostic specificity of 90% the IFNγ release assay reached a diagnostic sensitivity of 49.2% upon whole blood stimulation with HBsAg alone, but of 78.9% when HBsAg was combined with C3a and C5a. Conclusions Innate signals mediated via complement pathways contribute to HBV-specific cellular immune responses. The massively improved diagnostic sensitivity of the IFNγ release assay after addition of C3a and C5a demonstrates that these effects render whole blood-based cytokine release assays even more potent as screening tools in HBV immunology and HBV vaccination studies

    Foxp3+Foxp3^+ Regulatory T Cells Are Required for Recovery from Severe Sepsis

    Get PDF
    The role of regulatory T cells (Tregs) in bacterial sepsis remains controversial because antibody-mediated depletion experiments gave conflicting results. We employed DEREG mice (DEpletion of REGulatory T cells) and a caecal ligation and puncture model to elucidate the role of CD4+Foxp3+CD4^+Foxp3^+ Tregs in sepsis. In DEREG mice natural Tregs can be visualized easily and selectively depleted by diphtheria toxin because the animals express the diphtheria toxin receptor and enhanced green fluorescent protein as a fusion protein under the control of the foxp3 locus. We confirmed rapid Treg-activation and an increased ratio of Tregs to Teffs in sepsis. Nevertheless, 24 h after sepsis induction, Treg-depleted and control mice showed equally strong inflammation, immune cell immigration into the peritoneum and bacterial dissemination. During the first 36 h of disease survival was not influenced by Treg-depletion. Later, however, only Treg-competent animals recovered from the insult. We conclude that the suppressive capacity of Tregs is not sufficient to control overwhelming inflammation and early mortality, but is a prerequisite for the recovery from severe sepsis

    Mass production of highly active NK cells for cancer immunotherapy in a GMP conform perfusion bioreactor

    No full text
    NK cells have emerged as promising candidates for cancer immunotherapy, especially due to their ability to fight circulating tumor cells thereby preventing metastases formation. Hence several studies have been performed to generate and expand highly cytotoxic NK cells ex vivo, e.g., by using specific cytokines to upregulate both their proliferation and surface expression of distinct activating receptors. Apart from an enhanced activity, application of NK cells as immunotherapeutic agent further requires sufficient cell numbers and a high purity. All these parameters depend on a variety of different factors including the starting material, additives like cytokines as well as the culture system. Here we analyzed PBMC-derived NK cells of five anonymized healthy donors expanded under specific conditions in an innovative perfusion bioreactor system with respect to their phenotype, IFNγ production, and cytotoxicity in vitro. Important features of the meander type bioreactors used here are a directed laminar flow of medium and control of relevant process parameters. Cells are cultivated under “steady state” conditions in perfusion mode. Our data demonstrate that expansion of CD3+ T cell depleted PBMCs in our standardized system generates massive amounts of highly pure (>85%) and potent anti-cancer active NK cells. These cells express a variety of important receptors driving NK cell recruitment, adhesion as well as activation. More specifically, they express the chemokine receptors CXCR3, CXCR4, and CCR7, the adhesion molecules L-selectin, LFA-1, and VLA-4, the activating receptors NKp30, NKp44, NKp46, NKG2D, DNAM1, and CD16 as well as the death ligands TRAIL and Fas-L. Moreover, the generated NK cells show a strong IFNγ expression upon cultivation with K562 tumor cells and demonstrate a high cytotoxicity toward leukemic as well as solid tumor cell lines in vitro. Altogether, these characteristics promise a high clinical potency of thus produced NK cells awaiting further evaluation.Supported by the Ministry for Science, Research and Cultural Affairs of Brandenburg through the grant of the joint project Konsequenzen der altersassoziierten Zell- und Organfunktionen of the Gesundheitscampus Brandenburg

    A Novel Role for C5a in B-1 Cell Homeostasis

    No full text
    B-1 cells constitute a unique subpopulation of lymphocytes residing mainly in body cavities like the peritoneal cavity (PerC) but are also found in spleen and bone marrow (BM). As innate-like B cells, they mediate first line immune defense through low-affinity natural IgM (nIgM) antibodies. PerC B-1 cells can egress to the spleen and differentiate into nIgM antibody-secreting plasma cells that recognize conserved exogenous and endogenous cellular structures. Homing to and homeostasis within the PerC are regulated by the chemokine CXCL13 released by PerC macrophages and stroma cells. However, the exact mechanisms underlying the regulation of CXCL13 and B-1 homeostasis are not fully explored. B-1 cells play important roles in the inflammatory response to infection, autoimmunity, ischemia/reperfusion injury, obesity, and atherosclerosis. Remarkably, this list of inflammatory entities has a strong overlap with diseases that are regulated by complement suggesting a link between B-1 cells and the complement system. Interestingly, up to now, no data exist regarding the role of complement in B-1 cell biology. Here, we demonstrate for the first time that C5a regulates B-1 cell steady-state dynamics within the peritoneum, the spleen, and the BM. We found decreased B-1a cell numbers in the peritoneum and the spleen of C5aR1−/− mice associated with increased B1-a and B1-b numbers in the spleen and high serum titers of nIgM antibodies directed against phosphorylcholine and several pneumococcal polysaccharides. Similarly, peritoneal B-1a cells were decreased in the peritoneum and splenic B-1a and B-1b cells were increased in C5aR2−/− mice. The decrease in peritoneal B-1 cell numbers was associated with decreased peritoneal CXCL13 levels in C5aR1−/− and C5aR2−/− mice. In search for mechanisms, we found that combined TLR2 and IL-10 receptor activation in PerC macrophages induced strong CXCL13 production, which was significantly reduced in cells from C5aR1- and C5aR2-deficient mice and after combined C5aR-targeting. Such stimulation also induced marked local C5 production by PerC macrophages and C5a generation. Importantly, peritoneal in vivo administration of C5a increased CXCL13 production. Taken together, our findings suggest that local non-canonical C5 activation in PerC macrophages fuels CXCL13 production as a novel mechanism to control B-1 cell homeostasis

    Winter activity of questing ticks (Ixodes ricinus and Dermacentor reticulatus) in Germany − Evidence from quasi-natural tick plots, field studies and a tick submission study

    No full text
    Changing climatic conditions and other anthropogenic influences have altered tick distribution, abundance and seasonal activity over the last decades. In Germany, the two most important tick species are Ixodes ricinus and Dermacentor reticulatus, the latter of which has expanded its range across the country during the past three decades. While I. ricinus was rarely found during the colder months in the past, D. reticulatus is known to be active at lower temperatures. To quantify tick appearance during winter, specimens were monitored in quasi-natural tick plots three times a week. Additionally, the questing activities of these two tick species were observed throughout the year at nine field collection sites that were regularly sampled by the flagging method from April 2020 to April 2022. Furthermore, tick winter activity in terms of host infestation was analysed as part of a nationwide submission study from March 2020 to October 2021, in which veterinarians sent in ticks mainly collected from dogs and cats. All three study approaches showed a year-round activity of I. ricinus and D. reticulatus in Germany. During the winter months (December to February), on average 1.1% of the inserted I. ricinus specimens were observed at the tops of rods in the tick plots. The average questing activity of I. ricinus amounted to 2 ticks/100 m² (range: 1-17) in the flagging study, and 32.4% (211/651) of ticks found infesting dogs and cats during winter 2020/21 were I. ricinus. On average 14.7-20.0% of the inserted D. reticulatus specimens were observed at the tops of rods in the tick plots, while the average winter questing activity in the field study amounted to 23 specimens/100 m² (range: 0-62), and 49.8% (324/651) of all ticks collected from dogs and cats during winter 2020/21 were D. reticulatus. Additionally, the hedgehog tick Ixodes hexagonus was found to infest dogs and cats quite frequently during the winter months, accounting for 13.2% (86/651) of the collected ticks. A generalized linear mixed model identified significant correlations of D. reticulatus winter activity in quasi-natural plots with climatic variables. The combined study approaches confirmed a complementary main activity pattern of I. ricinus and D. reticulatus with climate change-driven winter activity of both species. Milder winters and a decrease of snowfall, and consequently high winter activity of D. reticulatus, among other factors, may have contributed to the rapid spread of this tick species throughout the country. Therefore, an effective year-round tick control is strongly recommended to not only efficiently protect dogs and cats with outdoor access from ticks and tick-borne pathogens (TBPs), but also to limit the further geographical spread of ticks and TBPs to so far non-endemic regions. Further measures, including information of the public, are necessary to protect both, humans and animals, in a One Health approach

    Image_1.jpeg

    No full text
    <p>B-1 cells constitute a unique subpopulation of lymphocytes residing mainly in body cavities like the peritoneal cavity (PerC) but are also found in spleen and bone marrow (BM). As innate-like B cells, they mediate first line immune defense through low-affinity natural IgM (nIgM) antibodies. PerC B-1 cells can egress to the spleen and differentiate into nIgM antibody-secreting plasma cells that recognize conserved exogenous and endogenous cellular structures. Homing to and homeostasis within the PerC are regulated by the chemokine CXCL13 released by PerC macrophages and stroma cells. However, the exact mechanisms underlying the regulation of CXCL13 and B-1 homeostasis are not fully explored. B-1 cells play important roles in the inflammatory response to infection, autoimmunity, ischemia/reperfusion injury, obesity, and atherosclerosis. Remarkably, this list of inflammatory entities has a strong overlap with diseases that are regulated by complement suggesting a link between B-1 cells and the complement system. Interestingly, up to now, no data exist regarding the role of complement in B-1 cell biology. Here, we demonstrate for the first time that C5a regulates B-1 cell steady-state dynamics within the peritoneum, the spleen, and the BM. We found decreased B-1a cell numbers in the peritoneum and the spleen of C5aR1<sup>−/−</sup> mice associated with increased B1-a and B1-b numbers in the spleen and high serum titers of nIgM antibodies directed against phosphorylcholine and several pneumococcal polysaccharides. Similarly, peritoneal B-1a cells were decreased in the peritoneum and splenic B-1a and B-1b cells were increased in C5aR2<sup>−/−</sup> mice. The decrease in peritoneal B-1 cell numbers was associated with decreased peritoneal CXCL13 levels in C5aR1<sup>−/−</sup> and C5aR2<sup>−/−</sup> mice. In search for mechanisms, we found that combined TLR2 and IL-10 receptor activation in PerC macrophages induced strong CXCL13 production, which was significantly reduced in cells from C5aR1- and C5aR2-deficient mice and after combined C5aR-targeting. Such stimulation also induced marked local C5 production by PerC macrophages and C5a generation. Importantly, peritoneal in vivo administration of C5a increased CXCL13 production. Taken together, our findings suggest that local non-canonical C5 activation in PerC macrophages fuels CXCL13 production as a novel mechanism to control B-1 cell homeostasis.</p

    Image_3.jpeg

    No full text
    <p>B-1 cells constitute a unique subpopulation of lymphocytes residing mainly in body cavities like the peritoneal cavity (PerC) but are also found in spleen and bone marrow (BM). As innate-like B cells, they mediate first line immune defense through low-affinity natural IgM (nIgM) antibodies. PerC B-1 cells can egress to the spleen and differentiate into nIgM antibody-secreting plasma cells that recognize conserved exogenous and endogenous cellular structures. Homing to and homeostasis within the PerC are regulated by the chemokine CXCL13 released by PerC macrophages and stroma cells. However, the exact mechanisms underlying the regulation of CXCL13 and B-1 homeostasis are not fully explored. B-1 cells play important roles in the inflammatory response to infection, autoimmunity, ischemia/reperfusion injury, obesity, and atherosclerosis. Remarkably, this list of inflammatory entities has a strong overlap with diseases that are regulated by complement suggesting a link between B-1 cells and the complement system. Interestingly, up to now, no data exist regarding the role of complement in B-1 cell biology. Here, we demonstrate for the first time that C5a regulates B-1 cell steady-state dynamics within the peritoneum, the spleen, and the BM. We found decreased B-1a cell numbers in the peritoneum and the spleen of C5aR1<sup>−/−</sup> mice associated with increased B1-a and B1-b numbers in the spleen and high serum titers of nIgM antibodies directed against phosphorylcholine and several pneumococcal polysaccharides. Similarly, peritoneal B-1a cells were decreased in the peritoneum and splenic B-1a and B-1b cells were increased in C5aR2<sup>−/−</sup> mice. The decrease in peritoneal B-1 cell numbers was associated with decreased peritoneal CXCL13 levels in C5aR1<sup>−/−</sup> and C5aR2<sup>−/−</sup> mice. In search for mechanisms, we found that combined TLR2 and IL-10 receptor activation in PerC macrophages induced strong CXCL13 production, which was significantly reduced in cells from C5aR1- and C5aR2-deficient mice and after combined C5aR-targeting. Such stimulation also induced marked local C5 production by PerC macrophages and C5a generation. Importantly, peritoneal in vivo administration of C5a increased CXCL13 production. Taken together, our findings suggest that local non-canonical C5 activation in PerC macrophages fuels CXCL13 production as a novel mechanism to control B-1 cell homeostasis.</p
    corecore