118 research outputs found

    Effect of different grain structures on centerline macrosegregation during direct-chill casting

    Get PDF
    This is the post-print version of the final paper published in Acta Materialia. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.Duplex grain structure consisting of coarse-cell and fine-cell dendritic grains is frequently found in the central portion of direct-chill cast billets and ingots. Coarse-cell grains are usually considered as free-floating crystals settled to the bottom of the billet sump. These grains are assumed to be solute-lean and contribute to the negative centerline segregation. In this paper the contribution of coarse-cell and fine-cell grains to macrosegregation is for the first time studied experimentally by direct measurements of their composition. It is shown that the coarse-cell, floating grains are depleted of solute and the areas of their accumulation contribute to the negative macrosegregation. The areas of fine-cell grains can be either enriched in solute or be close to the nominal composition. It is argued that their composition results from the interplay between thermo-solutal and shrinkage-induced flows. The roles of casting speed and grain refining are also under scrutiny in this paper.Netherlands Institute for Metals Researc

    Macrosegregation in direct-chill casting of aluminium alloys

    Get PDF
    This is the post-print version of the final paper published in Progress in Materials Science. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.Semi-continuous direct-chill (DC) casting holds a prominent position in commercial aluminium alloy processing, especially in production of large sized ingots. Macrosegregation, which is the non-uniform chemical composition over the length scale of a casting, is one of the major defects that occur during this process. The fact that macrosegregation is essentially unaffected by subsequent heat treatment (hence constitutes an irreversible defect) leaves us with little choice but to control it during the casting stage. Despite over a century of research in the phenomenon of macrosegregation in castings and good understanding of underlying mechanisms, the contributions of these mechanisms in the overall macrosegregation picture; and interplay between these mechanisms and the structure formation during solidification are still unclear. This review attempts to fill this gap based on the published data and own results. The following features make this review unique: results of computer simulations are used in order to separate the effects of different macrosegregation mechanisms. The issue of grain refining is specifically discussed in relation to macrosegregation. This report is structured as follows. Macrosegregation as a phenomenon is defined in the Introduction. In “Direct-chill casting – process parameters, solidification and structure patterns” section, direct-chill casting, the role of process parameters and the evolution of structural features in the as-cast billets are described. In “Macrosegregation in direct-chill casting of aluminium alloys” section, macrosegregation mechanisms are elucidated in a historical perspective and the correlation with DC casting process parameters and structural features are made. The issue of how to control macrosegregation in direct-chill casting is also dealt with in the same section. In “Role of grain refining” section, the effect of grain refining on macrosegregation is introduced, the current understanding is described and the contentious issues are outlined. The review is finished with conclusion remarks and outline for the future research.The Netherlands Institute for Metals Researc

    Effect of V and N on the microstructure evolution during continuous casting of steel

    Get PDF
    Low Carbon (LC) steel is not expected to be sensitive to hot tearing and/or cracking while microalloyed steels are known for their high cracking sensitivity during continuous casting. Experience of the Direct Sheet Plant caster at Tata Steel in Ijmuiden (the Netherlands), seems to contradict this statement. It is observed that a LC steel grade has a high risk of cracking alias hot tearing, while a High Strength Low Alloyed (HSLA) steel has a very low cracking occurrence. Another HSLA steel grade, with a similar composition but less N and V is however very sensitive to hot tearing. An extreme crack results in a breakout. A previous statistical analysis of the breakout occurrence reveals a one and a half times higher possibility of a breakout for the HSLA grade compared to the LC grade. HSLA with extra N, V shows a four times smaller possibility of breakout than LC. This study assigns the unexpected effect of the chemical composition on the hot tearing sensitivity to the role of some alloying elements such as V and N as structure refiners.This research was carried out under project number M41.5.08320 within the framework of the Research Program of the Materials innovation institute M2i (www.m2i.nl)

    Modeling of primary dendrite arm spacing variations in thin-slab casting of low carbon and low alloy steels

    Get PDF
    Solidification structure of a High Strength Low Alloy (HSLA) steel, in terms of dendrite arm spacing distribution across the shell thickness, is studied in a breakout shell from a thin-slab caster at Tata Steel in IJmuiden. Columnar dendrites were found to be the predominant morphology throughout the shell with size variations across the shell thickness. Primary Dendrite Arm Spacing (PDAS) increases by increasing the distance from meniscus or slab surface. Subsequently, a model is proposed to describe the variation of the PDAS with the shell thickness (the distance from slab surface) under solidifiction conditions experienced in the primary cooling zone of thin-slab casting. The proposed relationship related the PDAS to the shell thickness and, hence, can be used as a tool for predicting solidifcation structure and optimizing the thin-slab casting of low alloy steels

    Tensile mechanical properties, constitutive parameters and fracture characteristics of an as-cast AA7050 alloy in the near-solidus temperature regime

    Get PDF
    The knowledge on constitutive mechanical behavior at the temperatures close to the solidus is essential for predicting high-temperature deformation and fracture, e.g. cold and hot cracking of aluminum alloys. In this work we studied the tensile mechanical properties of an as-cast AA7050 alloy in a near-solidus temperature regime. Tensile tests were carried out using Gleeble-3800TM system at temperatures from 400 to 465 °C and at strain rates from 0.0005 to 0.05 s-1. The results show that the strength decreases with increasing temperature and decreasing strain rate. Meanwhile, ductility decreases with the increase of temperature and strain rate. The constitutive parameters were extracted by fitting the test data to the extended-Ludwik and creep-law equations. The parameters for the extended-Ludwik equation are continuous with the values from a lower temperature regime obtained earlier, while the parameters for the creep-law equation are comparable with those obtained on other 7XXX aluminum alloys. We observed a change in fracture mode at 450 °C; from ductile transgranular to intergranular. This temperature coincides with the discontinuity point of the temperature-ductility slope. On the fracture surface of a sample that was deformed at 465 °C with a strain rate of 0.0005 s-1, we observed features characteristic of micro-superplasticity. Considering the test conditions, viscous flows of incipient melt or liquid-like substances are suggested to be responsible for the formation of this feature

    Influence of melt feeding scheme and casting parameters during direct-chill casting on microstructure of an AA7050 billet

    Get PDF
    © The Minerals, Metals & Materials Society and ASM International 2012Direct-chill (DC) casting billets of an AA7050 alloy produced with different melt feeding schemes and casting speeds were examined in order to reveal the effect of these factors on the evolution of microstructure. Experimental results show that grain size is strongly influenced by the casting speed. In addition, the distribution of grain sizes across the billet diameter is mostly determined by melt feeding scheme. Grains tend to coarsen towards the center of a billet cast with the semi-horizontal melt feeding, while upon vertical melt feeding the minimum grain size was observed in the center of the billet. Computer simulations were preformed to reveal sump profiles and flow patterns during casting under different melt feeding schemes and casting speeds. The results show that solidification front and velocity distribution of the melt in the liquid and slurry zones are very different under different melt feeding scheme. The final grain structure and the grain size distribution in a DC casting billet is a result of a combination of fragmentation effects in the slurry zone and the cooling rate in the solidification range

    Semi-solid constitutive parameters and failure behavior of a cast AA7050 alloy

    Get PDF
    Materials innovation institute (www.m2i.nl) research framework, project number M42.5.09340; Norsk Hydro Fond for SINTEF; Modelling assisted INnovation for Aluminum DC Casting process (MINAC

    Linear Contraction Behavior of Low-Carbon, Low-Alloy Steels During and After Solidification Using Real-Time Measurements

    Get PDF
    A technique for measuring the linear contraction during and after solidification of low-alloy steel was developed and used for examination of two commercial low-carbon and low-alloy steel grades. The effects of several experimental parameters on the contraction were studied. The solidification contraction behavior was described using the concept of rigidity in a solidifying alloy, evolution of the solid fraction, and the microstructure development during solidification. A correlation between the linear contraction properties in the solidification range and the hot crack susceptibility was proposed and used for the estimation of hot cracking susceptibility for two studied alloys and verified with the real casting practice. The technique allows estimation of the contraction coefficient of commercial steels in a wide range of temperatures and could be helpful for computer simulation and process optimization during continuous casting. © 2013 The Minerals, Metals & Materials Society and ASM International

    Subwavelength slit acoustic metamaterial barrier

    Full text link
    [EN] Reduction of noise in the transmission path is a very important environmental problem. The standard method to reduce this noise level is the use of acoustic barriers. In this paper, an acoustic metamaterial based on sound transmission through subwavelength slits, is tailored to be used as an acoustic barrier. This system consists of two rows of periodic repetition of vertical rigid pickets separated by a slit of subwavelength width, embedded in air. Here, both the experimental and the numerical analyses are presented. These analyses have facilitated the identification of the parameters that affect the insertion loss performance. The results demonstrated that the proposed barrier can be tuned to mitigate a band noise in a mechanical plant for buildings where openings for air flow are required as well as industrial noise, without excessive barrier thickness.This work was financially supported by the Spanish Ministry of Science and Innovation through project MAT2010-16879.Rubio Michavila, C.; Candelas Valiente, P.; Belmar Ibáñez, F.; Gómez Lozano, V.; Uris Martínez, A. (2015). Subwavelength slit acoustic metamaterial barrier. Journal of Physics D: Applied Physics. 48(39):1-9. https://doi.org/10.1088/0022-3727/48/39/395501S19483
    corecore