38 research outputs found
Mapping Flood-Related Mortality in the Mediterranean Basin. Results from the MEFF v2.0 DB
Recent events in Western Attica in Greece (24 deaths in November 2017), in the Balearic Islands (13 deaths in October 2018), and in southern France (15 deaths in October 2018) show that flood-related mortality remains a major concern in Mediterranean countries facing flash floods. Over the past several years, many initiatives have arisen to create databases on flood-related mortality. An international initiative started in 2011 pooling regional and national databases on flood mortality from region and/or countries bordering the Mediterranean Sea. The MEditerranean Flood Fatality Database (MEFF DB) brings together, in 2018, six Mediterranean regions/countries: Catalonia (Spain), Balearic Islands (Spain), Southern France, Calabria (Italy), Greece, and Turkey, and covers the period 1980-2018. MEFF DB is on progress and, every year, new data are included, but for this study, we kept only the preliminary data that were geolocated and validated on 31st of December 2018. This research introduces a new step in the analysis of flood-related mortality and follows the statistical description of the MEFF DB already published. The goals of this paper are to draw the spatial distribution of flood mortality through a geographical information system (GIS) at different spatial scales: country, NUTS 3 (Nomenclature of Territorial Units for Statistics. Level 3) regions, catchment areas, and grid. A fatality rate (F: number of deaths/year/million of inhabitants) is created to help this analysis. Then, we try to relate mortality to basic (human or physical) drivers such as population density, rainfall seasonality, or rainfall frequency across the Mediterranean Basin. The mapping of F shows a negative mortality gradient between the western and the eastern parts of the Mediterranean Sea. The south of France appears to be the most affected region. The maps also highlight the seasonality of flood-related deaths with the same west-east gradient. It confirms that flood mortality follows the climatological seasonal patterns across the Mediterranean Basin. Flood-related fatalities mainly occur during the early fall season in the western part of the Mediterranean area, while the Easter Basin is affected later, in November or during the winter season. Eastern Turkey introduces another pattern, as mortality is more severe in summer. Mortality maps are then compared with factors that potentially contribute to the occurrence of flood fatalities, such as precipitation intensity (rainfall hazard), to explain geographical differences in the fatality rate. The density of a fatal event is correlated to the population density and the rainfall frequency. Conversely, the average number of deaths per event depends on other factors such as prevention or crisis managemen
Flood Fatalities in Europe, 1980-2018: Variability, Features, and Lessons to Learn
Floods are still a significant threat to people, despite of the considerable developments in forecasting, management, defensive, and rescue works. In the near future, climate and societal changes as both urbanization of flood prone areas and individual dangerous behaviors could increase flood fatalities. This paper analyzes flood mortality in eight countries using a 39-year database (1980-2018) named EUFF (EUropean Flood Fatalities), which was built using documentary sources. The narratives of fatalities were investigated and standardized in the database reporting the details of the events. The entire dataset shows a stable trend on flood fatalities, despite the existence of individual increasing (Greece, Italy, and South France) and decreasing (Turkey and Catalonia) trends. The 2466 fatalities were mainly males, aged between 30-49 years and the majority of them happened outdoor. Most often people were dragged by water/mud when travelling by motor vehicles. Some cases of hazardous behaviors, such as fording rivers, were also detected. The primary cause of death was drowning, followed by heart attack. This work contributes to understand the human-flood interaction that caused fatalities. The changes in society's vulnerability highlighted throughout this study contribute to manage future risks, to improve people protection actions, and to reduce risk behaviors
Hydrogeological and Climatological Risks Perception in a Multi-Hazard Environment: The Case of Greece
Climate-related hazards, such as wildfires and hydrogeological phenomena, cause extensive damages and casualties around the world. Despite the recent advances and technologies for risk mitigation, it is acknowledged that public risk perception is a critical factor for these tools to succeed. Greece and the broader Eastern Mediterranean is an area where, despite the diversity of natural disasters, there is a lack of understanding of the hazard types that people are most concerned with and how they measure against other groups of hazards (i.e., geophysical). This work uses an online survey targeting Greek people, aiming to provide a better understanding of their perception of different natural hazards. Statistical results show that people consider climate-related hazards less dangerous and likely to occur than earthquakes, which occur often as zero-impact events. Laymen may thus underestimate certain risks, which may inhibit appropriate preparation. Disaster experience was found to increase threat perceptions and to motivate preparedness. However, in what concerns climate-related hazards, the effect of experience may fade out over time. Awareness activities were found to associate with higher emergency response efficacy. Males exhibit lower risk perception and higher coping appraisals. However, prioritization of risks is almost identical between genders. Implications for risk management are discussed
Characteristics of Indoor Flood Fatalities: Evidence from Greece
Despite the important advances in flood forecasting and protection, floods remain one of the most lethal types of natural hazards. Previous works have explored several factors influencing the risks of flooding to human life and health. However, there is limited research and understanding on indoor flood fatalities and the circumstances under which they occur. This study explores victim-, building-, and situation-related characteristics in order to provide a better understanding of the conditions that lead to flood-related indoor deaths, exploiting a fatality database developed for Greece (1960–2020). The correlation analysis showed that indoor victims, compared with outdoor ones, tend to be older individuals, with high percentages of disabilities. A significant statistical association of the building material, roof type, and distance from the river with the building collapse was also found. The profile of the buildings in which flood fatality occurred was further compared with that of neighboring non-fatal buildings that were inhabited during the flood events. The statistical results indicated that the buildings with a fatality occurrence are mostly single-storey structures, made from masonry as the main building material. The findings have practical implications in risk communication and mitigation in terms of identifying the specific populations, circumstances, settings, and mechanisms that lead to dangerous indoor situations during flooding events
Decomposition analysis of CO2 emissions from passenger cars: The cases of Greece and Denmark
The paper presents a decomposition analysis of the changes in carbon dioxide (CO2) emissions from passenger cars in Denmark and Greece, for the period 1990-2005. A time series analysis has been applied based on the logarithmic mean Divisia index I (LMDI I) methodology, which belongs to the wider family of index decomposition approaches. The particularity in road transport that justifies a profound analysis is its remarkably rapid growth during the last decades, followed by a respective increase in emissions. Denmark and Greece have been selected based on the challenging differences of specific socio-economic characteristics of these two small EU countries, as well as on the availability of detailed data used in the frame of the analysis. In both countries, passenger cars are responsible for half of the emissions from road transport as well as for their upward trend, which provokes the implementation of a decomposition analysis focusing exactly on this segment of road transport. The factors examined in the present decomposition analysis are related to vehicles ownership, fuel mix, annual mileage, engine capacity and technology of cars. The comparison of the results discloses the differences in the transportation profiles of the two countries and reveals how they affect the trend of CO2 emissions.Decomposition analysis Transport CO2 emissions
The Occurrence of Catastrophic Multiple-Fatality Flash Floods in the Eastern Mediterranean Region
Despite recent technological advances, many parts of the world continue to experience flood disasters accompanied by significant loss of human lives. Understanding how frequent these deadly catastrophes are creates many uncertainties, especially in areas where disaster records are scarce or have short timeframes. It is, however, very important from a preparedness and civil protection standpoint to assess the frequency of such high-mortality events, especially considering the threat of climate change. This work develops a high-mortality flood event database using multiple international sources, covering a relatively long time window (1882–2021), exploring the deadliest floods in the Eastern Mediterranean region, and examining their seasonal distribution, their temporal evolution, and their basic spatial patterns. The study identifies 132 flash flood events (causing ≥10 fatalities) with a return period of only 1.56 years. Additionally, higher-magnitude events (>85th percentile) were found to be less common but still not very rare (return period = 9.1 years). The number of events shows an increase in recent decades, while seasonal and spatial patterns were identified as well. Overall, the findings provide a foundation for understanding how common catastrophic flood events are in the region, are beneficial for policymakers and relevant professionals, and are an important stepping stone towards a complete understanding of how extreme floods have changed in the last century or will change in the near future
Optimizing the Knowledge on Residential Heating Characteristics in Greece via Crowd-Sourcing Approach
Households have been pointed out as a significant source of air pollution and climate change. In Europe, the 60% of energy used by households is for space heating. The present work focuses on improving the knowledge on residential heating characteristics in Greece. The full causal chain, from the appliances used to the pollutants emitted, is examined at thelocal scale. A crowdsourcing approach was followed for the collection of the necessary data for performing the emissions calculations. With the use of a Geographic Information System (GIS), dynamic maps were produced for each Greek region, providing the information produced in this study in gridded form. In terms of energy demands, it was found that Greece relies mainly on oil and biomass and secondarily on gas and electricity. The use of biomass burning as a main heating fuel is quite high inthe colder and rural areas, while it is popular as a secondary heating fuel inthe urban areas. The residential heating period in Greece lasts from October to April and it is even shorter in southern Greece. In terms of emissions, CO and PM10 had the highest values since they are related to biomass burning. NOx emissions are mainly emitted by the oil burned in boilers
Urban Area Response to Flash Flood–Triggering Rainfall, Featuring Human Behavioral Factors: The Case of 22 October 2015 in Attica, Greece
International audienc
The Role of Water Depth Perception in Shaping Car Drivers’ Intention to Enter Floodwaters: Experimental Evidence
Floods are one of the most lethal natural hazards. Recent studies show that in a large percentage of flood-related fatalities, victims engage in risk-taking behavior by getting deliberately in contact with floodwaters. This study integrates behavioral psychology and situational environmental factors with the aim to examine why individuals undertake such risky behavior. In particular, we draw on the theory of planned behavior (TPB) to link water depth perception with the intention of car drivers to enter floodwaters. The hypotheses on which the study was based were that the depth of the water adversely affects the driver’s intention to enter floodwaters, and that this effect is mediated by a behavior-favorable attitude, a behavior-favorable subjective norm, and perceived behavioral control. Further, to understand the conditions under which this process works, the moderating role of past behavior in the above relationships is also examined. Results from an experimental study (n = 1940) show that water depth perception affects intention. Attitude, perceived behavioral control, and normative beliefs operate as the underlying psychological mechanism that leads to the mitigation of intention in higher water depth situations. Interestingly, past risk-taking behavior is found to be a significant condition under which this process works, by mostly affecting individuals’ attitudes. Mediation and moderated mediation analyses were conducted to estimate causal relationships. The findings provide evidence of the significant interaction that environmental, psychological, and precedent behavioral factors have on behavioral intentions