80 research outputs found

    Using genetics to understand the dynamics of wild primate populations

    Get PDF
    While much can be learned about primates by means of observation, the slow life history of many primates means that even decades of dedicated effort cannot illuminate long-term evolutionary processes. For example, while the size of a contemporary population can be estimated from field censuses, it is often desirable to know whether a population has been constant or changing in size over a time frame of hundreds or thousands of years. Even the nature of “a population” is open to question, and the extent to which individuals successfully disperse among defined populations is also difficult to estimate by using observational methods alone. Researchers have thus turned to genetic methods to examine the size, structure, and evolutionary histories of primate populations. Many results have been gained by study of sequence variation of maternally inherited mitochondrial DNA, but in recent years researchers have been increasingly focusing on analysis of short, highly variable microsatellite segments in the autosomal genome for a high-resolution view of evolutionary processes involving both sexes. In this review we describe some of the insights thus gained, and discuss the likely impact on this field of new technologies such as high-throughput DNA sequencing

    The evolution of duplicate gene expression in mammalian organs

    Get PDF
    Gene duplications generate genomic raw material that allows the emergence of novel functions, likely facilitating adaptive evolutionary innovations. However, global assessments of the functional and evolutionary relevance of duplicate genes in mammals were until recently limited by the lack of appropriate comparative data. Here, we report a large-scale study of the expression evolution of DNA-based functional gene duplicates in three major mammalian lineages (placental mammals, marsupials, egg-laying monotremes) and birds, on the basis of RNA sequencing (RNA-seq) data from nine species and eight organs. We observe dynamic changes in tissue expression preference of paralogs with different duplication ages, suggesting differential contribution of paralogs to specific organ functions during vertebrate evolution. Specifically, we show that paralogs that emerged in the common ancestor of bony vertebrates are enriched for genes with brain-specific expression and provide evidence for differential forces underlying the preferential emergence of young testis-and liver-specific expressed genes. Further analyses uncovered that the overall spatial expression profiles of gene families tend to be conserved, with several exceptions of pronounced tissue specificity shifts among lineage-specific gene family expansions. Finally, we trace new lineage-specific genes that may have contributed to the specific biology of mammalian organs, including the little-studied placenta. Overall, our study provides novel and taxonomically broad evidence for the differential contribution of duplicate genes to tissue-specific transcriptomes and for their importance for the phenotypic evolution of vertebrates

    Comparative genomic analyses provide new insights into evolutionary history and conservation genomics of gorillas

    Get PDF
    Genome sequencing is a powerful tool to understand species evolutionary history, uncover genes under selection, which could be informative of local adaptation, and infer measures of genetic diversity, inbreeding and mutational load that could be used to inform conservation efforts. Gorillas, critically endangered primates, have received considerable attention and with the recently sequenced Bwindi mountain gorilla population, genomic data is now available from all gorilla subspecies and both mountain gorilla populations. Here, we reanalysed this rich dataset with a focus on evolutionary history, local adaptation and genomic parameters relevant for conservation. We estimate a recent split between western and eastern gorillas of 150,000-180,000 years ago, with gene flow around 20,000 years ago, primarily between the Cross River and Grauer's gorilla subspecies. This gene flow event likely obscures evolutionary relationships within eastern gorillas: after excluding putatively introgressed genomic regions, we uncover a sister relationship between Virunga mountain gorillas and Grauer's gorillas to the exclusion of Bwindi mountain gorillas. This makes mountain gorillas paraphyletic. Eastern gorillas are less genetically diverse and more inbred than western gorillas, yet we detected lower genetic load in the eastern species. Analyses of indels fit remarkably well with differences in genetic diversity across gorilla taxa as recovered with nucleotide diversity measures. We also identified genes under selection and unique gene variants specific for each gorilla subspecies, encoding, among others, traits involved in immunity, diet, muscular development, hair morphology and behavior. The presence of this functional variation suggests that the subspecies may be locally adapted. In conclusion, using extensive genomic resources we provide a comprehensive overview of gorilla genomic diversity, including a so-far understudied Bwindi mountain gorilla population, identify putative genes involved in local adaptation, and detect population-specific gene flow across gorilla species.</p

    The oral microbiota of wild bears in Sweden reflects the history of antibiotic use by humans

    Get PDF
    Following the advent of industrial-scale antibiotic production in the 1940s,1 antimicrobial resistance (AMR) has been on the rise and now poses a major global health threat in terms of mortality, morbidity, and economic burden.2,3 Because AMR can be exchanged between humans, livestock, and wildlife, wild animals can be used as indicators of human-associated AMR contamination of the environment.4 However, AMR is a normal function of natural environments and is present in host-associated microbiomes, which makes it challenging to distinguish between anthropogenic and natural sources.4,5 One way to overcome this difficulty is to use historical samples that span the period from before the mass production of antibiotics to today. We used shotgun metagenomic sequencing of dental calculus, the calcified form of the oral microbial biofilm, to determine the abundance and repertoire of AMR genes in the oral microbiome of Swedish brown bears collected over the last 180 years. Our temporal metagenomics approach allowed us to establish a baseline of natural AMR in the pre-antibiotics era and to quantify a significant increase in total AMR load and diversity of AMR genes that is consistent with patterns of national human antibiotic use. We also demonstrated a significant decrease in total AMR load in bears in the last two decades, which coincides with Swedish strategies to mitigate AMR. Our study suggests that public health policies can be effective in limiting human-associated AMR contamination of the environment and wildlife

    Ecology, not host phylogeny, shapes the oral microbiome in closely related species

    Get PDF
    Host-associated microbiomes are essential for a multitude of biological processes. Placed at the contact zone between external and internal environments, the little-studied oral microbiome has important roles in host physiology and health. Here, we investigate the roles of host evolutionary relationships and ecology in shaping the oral microbiome in three closely related gorilla subspecies (mountain, Grauer's, and western lowland gorillas) using shotgun metagenomics of 46 museum-preserved dental calculus samples. We find that the oral microbiomes of mountain gorillas are functionally and taxonomically distinct from the other two subspecies, despite close evolutionary relationships and geographic proximity with Grauer's gorillas. Grauer's gorillas show intermediate bacterial taxonomic and functional, and dietary profiles. Altitudinal differences in gorilla subspecies ranges appear to explain these patterns, suggesting a close connection between dental calculus microbiomes and the environment, likely mediated through diet. This is further supported by the presence of gorilla subspecies-specific phyllosphere/rhizosphere taxa in the oral microbiome. Mountain gorillas show a high abundance of nitrate-reducing oral taxa, which may promote adaptation to a high-altitude lifestyle by modulating blood pressure. Our results suggest that ecology, rather than evolutionary relationships and geographic distribution, shape the oral microbiome in these closely related species

    Dental calculus as a tool to study the evolution of the mammalian oral microbiome

    Get PDF
    Dental calculus, the calcified form of the mammalian oral microbial plaque biofilm, is a rich source of oral microbiome, host, and dietary biomolecules and is well preserved in museum and archaeological specimens. Despite its wide presence in mammals, to date, dental calculus has primarily been used to study primate microbiome evolution. We establish dental calculus as a valuable tool for the study of nonhuman host microbiome evolution, by using shotgun metagenomics to characterize the taxonomic and functional composition of the oral microbiome in species as diverse as gorillas, bears, and reindeer. We detect oral pathogens in individuals with evidence of oral disease, assemble near-complete bacterial genomes from historical specimens, characterize antibiotic resistance genes, reconstruct components of the host diet, and recover host genetic profiles. Our work demonstrates that metagenomic analyses of dental calculus can be performed on a diverse range of mammalian species, which will allow the study of oral microbiome and pathogen evolution from a comparative perspective. As dental calculus is readily preserved through time, it can also facilitate the quantification of the impact of anthropogenic changes on wildlife and the environment

    The genome of the endangered dryas monkey provides new Insights into the evolutionary history of the vervets

    Get PDF
    Genomic data can be a powerful tool for inferring ecology, behaviour and conservation needs of highly elusive species, particularly when other sources of information are hard to come by. Here we focus on the dryas monkey, an endangered primate endemic to the Congo Basin with cryptic behaviour and possibly less than 250 remaining individuals. Using whole genome data we show that the dryas monkey represents a sister lineage to the vervet monkeys and has diverged from them at least 1 million years ago with additional bi-directional gene flow 590,000 – 360,000 years ago. After bonobo-chimpanzee admixture, this is the second reported case of gene flow that most likely involved crossing the Congo River, a strong dispersal barrier. As the demographic history of bonobos and dryas monkey shows similar patterns of population increase during this time period, we hypothesise that the fluvial topology of the Congo River might have been more dynamic than previously recognised. As a result of dryas monkey - vervet admixture, genes involved in resistance to the simian immunodeficiency virus (SIV) have been exchanged, possibly indicating adaptive introgression. Despite the presence of several homozygous loss-of-function mutations in genes associated with reduced sperm mobility and immunity, we find high genetic diversity and low levels of inbreeding and genetic load in the studied dryas monkey individual. This suggests that the current population carries sufficient genetic variability for the long-term survival of this species. We thus provide an example of how genomic data can directly improve our understanding of elusive species

    Isolated Grauer's gorilla populations differ in diet and gut microbiome

    Get PDF
    The animal gut microbiome has been implicated in a number of key biological processes, ranging from digestion to behavior, and has also been suggested to facilitate local adaptation. Yet studies in wild animals rarely compare multiple populations that differ ecologically, which is the level at which local adaptation may occur. Further, few studies simultaneously characterize diet and gut microbiome from the same sample, despite their likely interdependence. Here, we investigate the interplay between diet and gut microbiome in three geographically isolated populations of the critically endangered Grauer's gorilla, which we show to be genetically differentiated. We find population- and social group-specific dietary and gut microbial profiles and co-variation between diet and gut microbiome, despite the presence of core microbial taxa. There was no detectable effect of age, and only marginal effects of sex and genetic relatedness on the microbiome. Diet differed considerably across populations, with the high-altitude population consuming a lower diversity of plants compared to low-altitude populations, consistent with plant availability constraining diet. The observed pattern of covariation between diet and gut microbiome is likely a result of long-term social and environmental factors. Our study suggests that the gut microbiome is sufficiently plastic to support flexible food selection and hence contribute to local adaptation

    Ancient reindeer mitogenomes reveal island-hopping colonisation of the Arctic archipelagos

    Get PDF
    Climate warming at the end of the last glacial period had profound effects on the distribution of cold-adapted species. As their range shifted towards northern latitudes, they were able to colonise previously glaciated areas, including remote Arctic islands. However, there is still uncertainty about the routes and timing of colonisation. At the end of the last ice age, reindeer/caribou (Rangifer tarandus) expanded to the Holarctic region and colonised the archipelagos of Svalbard and Franz Josef Land. Earlier studies have proposed two possible colonisation routes, either from the Eurasian mainland or from Canada via Greenland. Here, we used 174 ancient, historical and modern mitogenomes to reconstruct the phylogeny of reindeer across its whole range and to infer the colonisation route of the Arctic islands. Our data shows a close affinity among Svalbard, Franz Josef Land and Novaya Zemlya reindeer. We also found tentative evidence for positive selection in the mitochondrial gene ND4, which is possibly associated with increased heat production. Our results thus support a colonisation of the Eurasian Arctic archipelagos from the Eurasian mainland and provide some insights into the evolutionary history and adaptation of the species to its High Arctic habitat
    corecore