49 research outputs found

    Class I BASIC PENTACYSTEINE factors regulate HOMEOBOX genes involved in meristem size maintenance

    Get PDF
    The BASIC PENTACYSTEINE (BCP) family is a poorly characterized plant transcription factor family of GAGA BINDING PROTEINS. In Arabidopsis, there are seven members (BPC1-7) that are broadly expressed, and they can potentially bind more than 3000 Arabidopsis GAGA-repeat-containing genes. To date, BPCs are known to be direct regulators of the INNER NO OUTER (INO), SEEDSTICK (STK), and LEAFY COTYLEDON 2 (LEC2) genes. Because of the high functional redundancy, neither single knockout nor double bpc mutant combinations cause aberrant phenotypes. The bpc1-2 bpc2 bpc3 triple mutant shows several pleiotropic developmental defects, including enlargement of the inflorescence meristem and flowers with supernumerary floral organs. Here, we demonstrated through expression analysis and chromatin immunoprecipitation assays that this phenotype is probably due to deregulation of the expression of the SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS/KNAT1 (BP) genes, which are both direct targets of BPCs. Moreover, we assigned a role to BPCs in the fine regulation of the cytokinin content in the meristem, as both ISOPENTENYLTRANSFERASE 7 (IPT7) and ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7) genes were shown to be overexpressed in the bpc1-2 bpc2 bpc3 triple mutant

    Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis

    Get PDF
    Studies on MADS-box genes in Arabidopsis and other higher eudicotyledonous flowering plants have shown that they are key regulators of flower development. Since Arabidopsis and monocotyledonous rice are distantly related plant species it is interesting to investigate whether the floral organ identity factors have been conserved in their functions, and if not, to understand the differences. Arabidopsis and rice are very suitable for these studies since they are both regarded as models for plant functional genomics. Both their genomes are sequenced and tools are available for the analysis of gene function. These developments have accelerated experiments and increased our knowledge on rice gene function. Therefore it is the right moment to perform a comparative analysis on MADS-box factors controlling floral organ identity as reported in this review

    Gynoecium size and ovule number are interconnected traits that impact seed yield

    Get PDF
    Angiosperms form the biggest group of land plants and display an astonishing diversity of floral structures. The development of the flowers greatly contributed to the evolutionary success of the angiosperms as they guarantee efficient reproduction with the help of either biotic or abiotic vectors. The female reproductive part of the flower is the gynoecium (also called pistil). Ovules arise from meristematic tissue within the gynoecium. Upon fertilization, these ovules develop into seeds while the gynoecium turns into a fruit. Gene regulatory networks involving transcription factors and hormonal communication regulate ovule primordium initiation, their spacing on the placenta, and ovule development. Ovule number and gynoecium size are usually correlated and several genetic factors that impact these traits have been identified. Understanding and fine-tuning the gene regulatory networks influencing ovule number and pistil length opens up strategies for crop yield improvement, which is pivotal in light of a rapidly growing world population. In this review, we present an overview of the current knowledge of the genes and hormones involved in determining ovule number and gynoecium size. We propose a model for the gene regulatory network that guides the developmental processes that determine seed yield

    Preface

    Get PDF
    AimThis was a one-year follow-up of families referred to support services after the parents visited the emergency department due to intimate partner violence, substance abuse or a suicide attempt. Its aim was to evaluate the well-being of any children. MethodsData on families identified a year earlier by the Amsterdam protocol were gathered from child protective services and parent and child self-reports in two Dutch regions from 2012-2015. ResultsWe included 399 children (52%) boys with a median age of eight years (range 1-18) in the study using child protective services data. Of the 101 families who participated in the first measurement, 67 responded one year after the parent's emergency department visit. The results showed that 20% of the children had no or minor problems, voluntary support services were involved in 60% of cases and child protective services were involved in 20%. Compared to their first assessment a year earlier, the children's psychosocial problems had not increased, but this could have been an underestimation due to selective responses. ConclusionThe Amsterdam protocol was valuable in referring families to voluntary support services, but given the ongoing problems in some families, professionals need to carefully monitor whether support services are sufficiently effectiv

    The European Marine Observation and Data Network (EMODnet): Visions and roles of the gateway to marine data in Europe

    Get PDF
    Marine data are needed for many purposes: for acquiring a better scientific understanding of the marine environment, but also, increasingly, as marine knowledge for decision making as well as developing products and services supporting economic growth. Data must be of sufficient quality to meet the specific users' needs. It must also be accessible in a timely manner. And yet, despite being critical, this timely access to known-quality data proves challenging. Europe's marine data have traditionally been collected by a myriad of entities with the result that much of our data are scattered throughout unconnected databases and repositories. Even when data are available, they are often not compatible, making the sharing of the information and data aggregation particularly challenging. In this paper, we present how the European Marine Observation and Data network (EMODnet) has developed over the last decade to tackle these issues. Today, EMODnet is comprised of more than 150 organizations which gather marine data, metadata, and data products and make them more easily accessible for a wider range of users. EMODnet currently consists of seven sub-portals: bathymetry, geology, physics, chemistry, biology, seabed habitats, and human activities. In addition, Sea-basin Checkpoints have been established to assess the observation capacity in the North Sea, Mediterranean, Atlantic, Baltic, Artic, and Black Sea. The Checkpoints identify whether the observation infrastructure in Europe meets the needs of users by undertaking a number of challenges. To complement this, a Data Ingestion Service has been set up to tackle the problem of the wealth of marine data that remain unavailable, by reaching out to data holders, explaining the benefits of sharing their data and offering a support service to assist them in releasing their data and making them available through EMODnet. The EMODnet Central Portal (www.emodnet.eu) provides a single point of access to these services, which are free to access and use. The strategic vision of EMODnet in the next decade is also presented, together with key focal areas toward a more user-oriented service, including EMODnet for business, internationalization for global users, and stakeholder engagement to connect the diverse communities across the marine knowledge value chain

    B-cell targeting with anti-CD38 daratumumab:implications for differentiation and memory responses

    Get PDF
    B cell–targeted therapies, such as CD20-targeting mAbs, deplete B cells but do not target the autoantibody-producing plasma cells (PCs). PC-targeting therapies such as daratumumab (anti-CD38) form an attractive approach to treat PC-mediated diseases. CD38 possesses enzymatic and receptor capabilities, which may impact a range of cellular processes including proliferation and differentiation. However, very little is known whether and how CD38 targeting affects B-cell differentiation, in particular for humans beyond cancer settings. Using in-depth in vitro B-cell differentiation assays and signaling pathway analysis, we show that CD38 targeting with daratumumab demonstrated a significant decrease in proliferation, differentiation, and IgG production upon T cell–dependent B-cell stimulation. We found no effect on T-cell activation or proliferation. Furthermore, we demonstrate that daratumumab attenuated the activation of NF-κB in B cells and the transcription of NF-κB–targeted genes. When culturing sorted B-cell subsets with daratumumab, the switched memory B-cell subset was primarily affected. Overall, these in vitro data elucidate novel non-depleting mechanisms by which daratumumab can disturb humoral immune responses. Affecting memory B cells, daratumumab may be used as a therapeutic approach in B cell–mediated diseases other than the currently targeted malignancies.</p

    B-cell targeting with anti-CD38 daratumumab:implications for differentiation and memory responses

    Get PDF
    B cell–targeted therapies, such as CD20-targeting mAbs, deplete B cells but do not target the autoantibody-producing plasma cells (PCs). PC-targeting therapies such as daratumumab (anti-CD38) form an attractive approach to treat PC-mediated diseases. CD38 possesses enzymatic and receptor capabilities, which may impact a range of cellular processes including proliferation and differentiation. However, very little is known whether and how CD38 targeting affects B-cell differentiation, in particular for humans beyond cancer settings. Using in-depth in vitro B-cell differentiation assays and signaling pathway analysis, we show that CD38 targeting with daratumumab demonstrated a significant decrease in proliferation, differentiation, and IgG production upon T cell–dependent B-cell stimulation. We found no effect on T-cell activation or proliferation. Furthermore, we demonstrate that daratumumab attenuated the activation of NF-?B in B cells and the transcription of NF-?B–targeted genes. When culturing sorted B-cell subsets with daratumumab, the switched memory B-cell subset was primarily affected. Overall, these in vitro data elucidate novel non-depleting mechanisms by which daratumumab can disturb humoral immune responses. Affecting memory B cells, daratumumab may be used as a therapeutic approach in B cell–mediated diseases other than the currently targeted malignancies

    MADS reloaded : evolution of the AGAMOUS subfamily genes

    No full text
    AGAMOUS subfamily proteins are encoded by MADS-box family genes. They have been shown to play key roles in the determination of reproductive floral organs such as stamens, carpels and ovules. However, they also play key roles in ensuring a fixed number of floral organs by controlling floral meristem determinacy. Recently, an enormous amount of sequence data for nonmodel species have become available together with functional data on AGAMOUS subfamily members in many species. Here, we give a detailed overview of the most important information about this interesting gene subfamily and provide new insights into its evolution

    Lipid production in wheypermeate by an unsaturated fatty acid mutant of the oleaginous yeast Apiotrichum curvatum

    No full text
    Growth rate and lipid production rate of an unsaturated fatty acid mutant (Ufa25), derived from the oleaginous yeast Apiotrichum curvatum, in wheypermeate supplemented with rapeseed oil (as unsaturated fatty acid source), was comparable with wild type. The quality of the lipids produced by Ufa25 approached cocoa butter. Production of 1 kg lipid by Ufa25 will need about 6.3 kg lactose from whey and 0.5 kg rapeseed oil

    The ins and outs of the rice AGAMOUS subfamily

    No full text
    Genes of the AGAMOUS subfamily have been shown to play crucial roles in reproductive organ identity determination, fruit, and seed development. They have been deeply studied in eudicot species and especially in Arabidopsis. Recently, the AGAMOUS subfamily of rice has been studied for their role in flower development and an enormous amount of data has been generated. In this review, we provide an overview of these data and discuss the conservation of gene functions between rice and Arabidopsis
    corecore