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Abstract 15 

Angiosperms form the biggest group of land plants and display an astonishing diversity of floral 16 

structures. The development of the flowers greatly contributed to the evolutionary success of the 17 

angiosperms as they guarantee efficient reproduction with the help of either biotic or abiotic vectors. 18 

The female reproductive part of the flower is the gynoecium (also called pistil). Ovules arise from 19 

meristematic tissue within the gynoecium. Upon fertilization, these ovules develop into seeds while 20 

the gynoecium turns into a fruit. Gene regulatory networks involving transcription factors and 21 

hormonal communication regulate ovule primordium initiation, their spacing on the placenta, and 22 

ovule development. Ovule number and gynoecium size are usually correlated and several genetic 23 

factors that impact these traits have been identified. Understanding and fine-tuning the gene 24 

regulatory networks influencing ovule number and pistil length opens up strategies for crop yield 25 

improvement, which is pivotal in light of a rapidly growing world population. In this review, we 26 

present an overview of the current knowledge of the genes and hormones involved in determining 27 

ovule number and gynoecium size. We propose a model for the gene regulatory network that guides 28 

the developmental processes that determine seed yield. 29 
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Introduction  35 

Life on earth is affected by plants in varied ways. Of the estimated 400,000 extant plant 36 

species, approximately 94% are seed plants (Govaerts, 2001; Willis, 2017). This demonstrates that 37 

seed development and dispersion strategies greatly contributed to the success of this organismal 38 

group. The vast majority of seed plants are angiosperms and only a comparatively small number are 39 

gymnosperms. Both plant divisions produce ovules; however, only angiosperm species produce 40 

flowers and as another selective advantage, each flower produces one or more gynoecia that protect 41 

and nourish the ovules. Following fertilization, the gynoecium (or pistil) generally develops into a 42 

fruit and ovules develop into seeds. 43 

Depending on the species, the gynoecium consists of one or more carpels that can be fused or 44 

unfused (Endress and Igersheim, 2000). The Arabidopsis gynoecium consists of two fused carpels 45 

(Smyth et al., 1990; Alvarez-Buylla et al., 2010). Along the margins where the carpels fuse, a 46 

meristematic tissue, termed the carpel margin meristem (CMM), is formed. The CMM gives rise to 47 

the placenta, ovules, septum and the transmitting tract (Reyes-Olalde et al., 2013; Reyes-Olalde and 48 

de Folter, 2019). Inside an ovule the female gametophyte develops, which is comprised of three 49 

antipodal cells, a central cell, two synergids and an egg cell (Drews and Koltunow, 2011; Bencivenga 50 

et al., 2011). Therefore, ovule development is a crucial process during the plant life cycle and has 51 

been studied in many species. In recent decades, many reviews on ovule development have been 52 

written, demonstrating its importance and the degree of active research in this area (e.g., Reiser and 53 

Fischer, 1993; Angenent and Colombo, 1996; Grossniklaus and Schneitz, 1998; Gasser et al., 1998; 54 

Bowman et al., 1999; Skinner et al., 2004; Colombo et al., 2008; Shi and Yang, 2011; Endress, 2011; 55 

Cucinotta et al., 2014; Gasser and Skinner, 2019; Shirley et al., 2019; Pinto et al., 2019). 56 

To complement existing literature, this review focuses on recent discoveries in ovule 57 

development and gynoecium size determination. An overview is provided of the genes and hormonal 58 

communication involved in the developmental programs (Fig. 1 and Table 1). Understanding the 59 

regulatory networks that determine ovule number and gynoecium size is important as they hugely 60 

impact seed yield, and fine-tuning them appears to be a particularly promising strategy for enhancing 61 

crop yields. 62 

 63 

Placenta development and ovule primordium initiation in Arabidopsis 64 

Periclinal cell divisions within the sub-epidermal tissue of the placenta initiate ovule 65 

primordium development at stage 9 of flower development (Roeder and Yanofsky, 2006). 66 

Subsequently, three layers of primordium cells form a finger-like structure during stage 10, which 67 

then differentiates into three regions along the proximal–distal axis: the funiculus, the chalaza and 68 
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the nucellus (Schneitz et al., 1995). These three regions undergo distinct but interdependent 69 

developmental processes. The nucellus is the site of megasporogenesis, where the megaspore mother 70 

cell (MMC) differentiates and locates to the upmost, central and subepidermal position of the digit-71 

shaped ovule primordium (reviewed in Pinto et al., 2019). The chalaza is the region from which the 72 

inner and the outer integuments develop, which finally envelop and protect the embryonic sac. The 73 

funiculus remains attached to the gynoecium via the placental tissue and this connection is required 74 

for the transport of nutrients to the ovule (Fig. 1). For this reason, the placental tissue is fundamental 75 

for ovule primordia formation, and for determining their number and maintenance. 76 

In Arabidopsis, placental tissue differentiates from the CMM, which is the central ridge of 77 

cells that fuse and give rise to the septum. Placental tissue differentiates along the length of the septum 78 

adjacent to the lateral walls (Alvarez and Smyth, 2002; Nole-Wilson et al., 2010a; Reyes-Olalde et 79 

al., 2013). Communication between transcription factors and hormones is essential to maintain the 80 

meristematic activity of the placenta, to determine the sites of ovule initiation and ovule identity, and 81 

to establish the distance between two adjacent ovules (Cucinotta et al., 2014). Several genes that are 82 

important for placenta development have been described in the literature and reviewed by Cucinotta 83 

et al. (2014) and Reyes-Olalde and de Folter (2019) and include AINTEGUMENTA (ANT), CUP-84 

SHAPED COTYLEDON 1 (CUC1) and CUC2, LEUNIG (LUG), MONOPTEROS (MP) and 85 

PERIANTHIA (PAN) (Fig. 1 and Table 1).  86 

AINTEGUMENTA encodes an AP2 transcription factor (Klucher et al., 1996) and positively 87 

regulates organ size via determining cell number and meristematic competence. Ant mutants have 88 

fewer and smaller floral organs than the wild type. In particular, the ant-9 mutant is characterised by 89 

unfused carpels at the tip of the pistil (Elliott et al., 1996), whereas in ant-4, the size of floral organs 90 

is reduced (Krizek, 2009). In contrast to these mutant phenotypes, Arabidopsis plants that overexpress 91 

ANT possess larger floral organs than the wild type (Mizukami and Fischer, 2000). Expression of 92 

ANT is controlled by AUXIN-REGULATED GENE INVOLVED IN ORGAN SIZE (ARGOS), an 93 

auxin-inducible gene (Hu et al., 2003). When ARGOS is overexpressed, floral organs become 94 

enlarged, resulting in longer siliques than those of wild type (Hu et al., 2003). This was one of the 95 

first pieces of evidence that implicated a key role for auxin in pistil development. 96 

ANT expression initiates in the placenta and is maintained throughout all stages of ovule 97 

development, in particular in the chalaza region and in the integuments. The reduced ovule number 98 

phenotype of the ant mutant is exacerbated when it is combined with other mutations that affect CMM 99 

and placenta development, such as revoluta (rev), suggesting that the activity of the REV gene, which 100 

encodes a class III homeodomain leucine zipper transcription factor, is also required for placenta 101 

formation (Nole-Wilson et al., 2010a). ANT interacts with the transcriptional repressor SEUSS 102 
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(SEU) and simultaneous loss of both protein activities severely affects placenta development and 103 

leads to a complete loss of ovule formation. When a weaker ant-3 allele was combined with seu-3, 104 

placenta development was maintained but the number of ovules that initiated was reduced to 105 

approximately half of that observed in Col-0 wild-type plants (Azhakanandam et al., 2008). Another 106 

transcriptional co-regulator involved in gynoecium patterning, is LEUNIG (LUG). Strong lug-1 and 107 

intermediate lug-3 alleles show a failure in ridge fusion and a reduction in the amount of placental 108 

tissue, with a consequent decrease in the number of ovules formed (Liu et al., 2000). The combination 109 

of lug and ant mutations results in gynoecia that are unable to develop ovules (Liu et al., 2000). The 110 

loss of ovules in the ant and seu backgrounds is strongly enhanced by mutations in the PERIANTHIA 111 

(PAN) gene, which encodes a bZIP transcription factor that is expressed in the gynoecium medial 112 

ridge, placenta and ovules, where it  promotes ovule formation (Wynn et al., 2014). 113 

Similar to ANT, factors important for integument growth often affect ovule primordium 114 

formation. Two examples are HUELLENLOS (HLL) and SHORT INTEGUMENTS 2 (SIN2). HLL 115 

encodes a mitochondrial ribosomal protein and its mutation is associated with smaller gynoecia and 116 

a 10% reduction in the number of ovules (Schneitz et al., 1998; Skinner et al., 2001). Shorter gynoecia 117 

that bear fewer ovules are also observed in the sin2 mutant; however, more interestingly, the absence 118 

of SIN2 function leads to an abnormal distribution of ovules along the placenta (Broadhvest et al., 119 

2000), in which the distance between ovules is greater than in the wild type; thus, a reduction in ovule 120 

number is caused by a reduction in gynoecium size and by the reduced ability of the placental tissue 121 

to initiate ovule primordia. SIN2 encodes a mitochondrial DAR GTPase and similar to HLL, is 122 

hypothesised to function in mitochondrial ribosome assembly (Hill et al., 2006). Notably, these two 123 

ribosomal proteins, which are targeted to the mitochondria, are necessary for ovule primordium 124 

formation, and it has been suggested that impaired mitochondrial function might cause cell-cycle 125 

arrest in the placenta and subsequently in the ovule integuments (Broadhvest et al. 2000).  126 

 127 

Complex hormonal communication promotes ovule initiation and determines pistil size 128 

Plant organogenesis requires cells to proliferate, grow and differentiate in a coordinated way. 129 

The intercellular communication required during organ initiation is mediated by different 130 

phytohormones (Davies, 2004; Vanstraelen and Benková, 2012; Schaller et al., 2015; Marsch-131 

Martínez and de Folter, 2016). As will be discussed in this review, auxins, cytokinins, gibberellins 132 

and brassinosteroids all play fundamental roles in ovule primordium formation (Fig. 1).   133 

In most auxin-related mutants, defects in gynoecium formation lead to the reduction or 134 

absence of placental tissue and the corresponding absence of ovules (reviewed in Balanzá et al., 2006; 135 

Cucinotta et al., 2014; Larsson et al., 2013). This phenotype is common to all mutants in which auxin 136 
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synthesis or transport pathways are compromised, such as yucca1 (yuc1) yuc4 (Cheng et al., 2006) 137 

and pin1-1 (Okada et al., 1991) or is similar to that following treatment with the polar auxin transport 138 

inhibitor, 1-naphthyl phthalamic acid (NPA) (Nemhauser et al., 2000).  139 

Polar auxin transport is mediated by the PINFORMED1 (PIN1) efflux transporter and is 140 

required to create a zone with an auxin concentration maximum in the placenta, where the founder 141 

cells of the ovule primordia will be specified (Benková et al., 2003; Ceccato et al., 2013; Galbiati et 142 

al., 2013). Subsequently, the orientation of PIN1 within the membrane relocalises and redirects auxin 143 

flow, establishing a gradient with a maximum at the apices of the formed primordia. In developing 144 

organs, auxin distribution can be monitored in vivo by imaging a synthetic auxin-inducible promoter, 145 

DR5. In plants that express GREEN FLUORESCENT PROTEIN (GFP) from the DR5 promoter, 146 

green fluorescence is detected at the apices of the ovule primordia, consistent with PIN1-mediated 147 

auxin flow directed to the apex (Benková et al., 2003; Galbiati et al., 2013). The weak pin1-5 mutant 148 

allele can produce some flowers in which the pistils have slightly reduced valves, which on average 149 

contain only nine ovules (Bennett et al., 1995; Sohlberg et al., 2006; Bencivenga et al., 2012). 150 

Cytokinins (CKs) occupy a central role in the regulation of cell division and cell 151 

differentiation. They are positive regulators of ovule formation, as demonstrated by the phenotype of 152 

mutants in which CK pathways are altered. In the ckx3 ckx5 double mutant, the degradation of CKs 153 

is compromised and the consequent increase in the levels of these hormones leads to an increased 154 

activity of the reproductive meristem (Bartrina et al., 2011). Moreover, the longer than normal 155 

gynoecia of ckx3 ckx5 double mutants contain about twice as many ovules as those of the wild type, 156 

indicating an increase in the meristematic capacity of placental tissue (Bartrina et al., 2011). By 157 

contrast, reduced ovule formation is observed in mutants in which the synthesis or perception of CKs 158 

is compromised. Plants that carry mutations in genes that encode all three CKs receptors, cytokinin 159 

response 1 (cre1-12) histidine kinase2 (ahk2-2) and ahk3, develop five ovules per pistil on average, 160 

in addition to showing pleiotropic growth defects (Higuchi et al., 2004; Bencivenga et al., 2012). The 161 

AHK2 and AHK3 receptors are expressed throughout ovule development, from the early stages until 162 

maturity, whereas CRE1/AHK4 is expressed in the chalaza region and subsequently in the 163 

integuments, suggesting that AHK2 and AHK3 preferentially contribute to ovule primordium 164 

formation (Bencivenga et al., 2012). The ovule and gynoecium phenotype of the cre1-12 ahk2-2 165 

ahk3-3 triple mutant resembles that of the weak pin1-5 mutant allele (Bencivenga et al., 2012). This 166 

similarity is due to the downregulation of PIN1 expression in the triple mutant, suggesting that during 167 

the early stages of ovule development, CK activates PIN1 expression. Bencivenga et al. (2012) 168 

showed that treating inflorescences with the synthetic cytokinin 6-benzylaminopurine (BAP) 169 

increases PIN1 expression in the gynoecium. Strikingly, treatment with BAP causes the formation of 170 
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on average 20 additional ovule primordia in each gynoecium, which are positioned between the 171 

existing primordia formed before the treatment. This suggests that placental tissue at the boundaries 172 

between ovules maintains meristematic competence. During root development, CK affects auxin 173 

polar transport via PIN1 both at the transcriptional and post-transcriptional levels. In contrast to the 174 

situation in the gynoecium, CK negatively regulates the expression of PIN1 in the root and control 175 

the endorecycling of PIN1 from the membrane to direct it to vacuoles for lytic degradation (Ruzicka 176 

et al., 2009; Marhavý et al., 2011). In roots, CYTOKININ RESPONSE FACTORS (CRFs), 177 

especially CRF2, CRF3 and CRF6, transcriptionally regulate PIN1 by binding to its promoter at the 178 

cis-regulatory PIN CYTOKININ RESPONSE ELEMENT (PCRE) (Šimášková et al., 2015) and 179 

modulate its expression in response to CK. Similarly, CRFs also mediate PIN1 expression in ovules 180 

in response to CK (Cucinotta et al., 2016). Indeed, PIN1 expression is reduced in the crf2 crf3 crf6 181 

(crf2/3/6) triple mutant and cannot be increased by CK treatment. The placenta in crf2/3/6 is also 182 

shorter, but this is not sufficient to explain the 30% decrease in ovule number as ovule density is 183 

lower in crf2/3/6 than in the wild type (Cucinotta et al., 2016). Because PIN1 expression in crf2/3/6 184 

was unresponsive to CK application, the mutant was significantly less sensitive to CK treatment than 185 

the wild type with regard to an increase in ovule number and pistil length. Auxin also regulates CRF2, 186 

which is a direct target of the Auxin Response Factor (ARF) AUXIN RESPONSE FACTOR 187 

5/MONOPTEROS (ARF5/MP) (Schlereth et al., 2010), highlighting another convergence point 188 

between auxin and CK. 189 

Another ARF family member that is required for appropriate apical–basal gynoecium 190 

patterning is ARF3/ETTIN (ETT). The ett mutant is characterised by a shorter ovary with an 191 

elongated style and gynophore (Sessions et al., 1997). A similar gynoecium phenotype resulted from 192 

treatment with the auxin transport inhibitor (NPA), suggesting that ETT plays a key role in auxin 193 

signalling along the apical–basal gynoecium axis (Nemhauser et al., 2000). Moreover, ETT restricts 194 

the expression domain of SPATULA (SPT), which encodes a basic helix-loop-helix (bHLH) 195 

transcription factor (Heisler et al., 2001). Mutations in SPT causes a split-carpel phenotype in the 196 

apical part of the gynoecium, leading to a slight reduction in ovule number (Alvarez and Smyth, 1999; 197 

Nahar et al., 2012). SPT dimerises with another bHLH transcription factor, INDEHISCHENT (IND), 198 

to repress the expression of PINOID (Girin et al., 2011), which encodes a serine/threonine kinase that 199 

regulates PIN1 polarisation via phosphorylation (Friml et al., 2004). The repression of PID by SPT 200 

and IND allows the formation of a radially symmetric auxin ring in the upper part of the gynoecium 201 

that is required for correct style and stigma development (Moubayidin and Østergaard, 2014).  202 

Furthermore, SPT interacts with the three closely related bHLH transcription factors 203 

HECATE1 (HEC1), HEC2 and HEC3 (Gremski et al., 2007) and similar to ett, hec-1 hec-2 hec-3 204 
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triple mutants possess an elongated style and shorter ovaries. The HEC proteins and SPT promote 205 

auxin transport in concert by activating PIN1 and PIN3 expression (Schuster et al., 2015) and also 206 

transcriptionally activate the type-A ARABIDOPSIS RESPONSE REGULATORS (ARR-As), 207 

which are negative regulators of CK signalling (Schuster et al., 2015). Via this dual action on auxin 208 

transport and CK response, HECs and SPT regulate wild-type gynoecium fusion at the apex, and style 209 

and stigma development. Furthermore, SPT alone in the medial domain activates the type-B ARRs, 210 

especially ARR1, which are positive regulators of CK signalling. The arr1 arr10 arr12 triple mutant 211 

possesses a shorter gynoecium and significantly fewer ovules than the wild type (Reyes-Olalde et al., 212 

2017).  213 

In addition to auxin localisation, correct auxin signalling is also required for wild-type 214 

gynoecium development, as confirmed by a recent study on members of the Small Auxin-Upregulated 215 

RNA (SAUR) family, which were initially identified as short transcripts that were rapidly upregulated 216 

in response to auxin (McClure and Guilfoyle, 1987). When SAUR8, SAUR10 and SAUR12 are 217 

ectopically overexpressed in Arabidopsis, the gynoecium and resulting siliques are longer than in 218 

wild type, suggesting that auxin positively regulates gynoecium length and probably indirectly, 219 

silique length (van Mourik et al., 2017). Notably, SAUR gene expression increased by 100-fold 220 

following combined auxin and brassinosteroid treatment (van Mourik et al., 2017). Brassinosteroids 221 

(BRs) are clearly involved in pistil growth and ovule number specification; gynoecia of the enhanced 222 

BR-signalling mutant brassinazole-resistant 1-1D (bzr1-1D) contained not only more ovules than 223 

wild type but were also longer. By contrast, BR-deficient mutants such as de-etiolated 2 (det-2), 224 

brassinosteroid insensitive 1 (bri1-5) and brassinosteroid-insensitive 2 (bin2-1) developed shorter 225 

pistils with fewer ovules (Huang et al., 2013). 226 

The involvement of brassinosteroids in gynoecium and ovule development was also 227 

confirmed by Nole-Wilson et al. (2010), who observed that a reduction in the expression of CYP85A2, 228 

which encodes an enzyme involved in the final step of brassinolide biosynthesis (Nomura et al., 229 

2005), enhances the seuss mutant phenotypic disruptions in ovules and gynoecia (Nole-Wilson et al., 230 

2010b). 231 

 232 

CUP-SHAPED COTYLEDON 1 (CUC1) and CUC2 function synergistically with auxin and 233 

cytokinins  234 

During ovule primordium formation, CK homeostasis requires two NAC-domain 235 

transcription factors, CUC1 and CUC2. These are expressed in lateral organ boundaries and function 236 

redundantly during organ boundary determination. CUC1 and CUC2 are expressed in the septum and 237 

placenta, and following the emergence of ovule primordia, CUC2 expression is restricted to the 238 
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borders between the ovules (Ishida et al., 2000b; Galbiati et al., 2013; Gonçalves et al., 2015). The 239 

CUC1 and CUC2 genes are both post-transcriptionally regulated by miR164 microRNAs (Mallory et 240 

al., 2004; Laufs et al., 2004). Gynoecia of the in vitro regenerated cuc1 cuc2 mutant as well as of 241 

cuc2-1 pSTK::CUC1_RNAi plants have reduced ovule numbers. The cuc1 cuc2 double mutant has 242 

on average fewer than 10 ovules per pistil (Ishida et al., 2000a), whereas cuc2-1 pSTK::CUC1_RNAi 243 

plants, in which CUC1 was specifically silenced in the placenta and in ovules, showed a 20% 244 

reduction in ovule number, but gynoecium length was not affected. In pistils of these plants, ovules 245 

were more widely spaced when compared to the wild type (Galbiati et al., 2013). This result was 246 

confirmed by silencing CUC1 and CUC2 via overexpressing MIR164A, which strongly reduced ovule 247 

number, indicating a major contribution of CUC1 and CUC2 to ovule initiation (Gonçalves et al., 248 

2015). The analysis of PIN1-GFP expression in cuc2-1 pSTK::CUC1_RNAi plants revealed that 249 

CUC1 and CUC2 redundantly promote PIN1 expression and PIN1 membrane localisation in ovules. 250 

Treatment with BAP increased PIN1 expression and complemented the reduced ovule number 251 

phenotype of cuc2-1 pSTK::CUC1_RNAi plants (Galbiati et al., 2013). Therefore, CK act 252 

downstream from or in parallel with CUC1 and CUC2 to induce the expression of PIN1. Recently, it 253 

has been demonstrated that CUC1 and CUC2 induce CK responses in vivo and function upstream of 254 

CK by transcriptionally repressing UGT73C1 and UGT85A3, which encode two enzymes involved 255 

in CKs inactivation (Cucinotta et al., 2018). Consistent with this result, the concentration of inactive 256 

CKs glucosides was higher in cuc2-1 pSTK::CUC1_RNAi inflorescences than in wild-type plants. 257 

The expression of CUC1 and CUC2 is also linked with auxin signalling: their expression 258 

pattern coincides with that of the Auxin Response Factor ARF5/MP (see above) and both genes are 259 

downregulated in pistils of the weak mp-S319 mutant allele (Galbiati et al., 2013). During the early 260 

stages of placenta development and ovule formation, ARF5/MP directly transcriptionally activates 261 

CUC1 and CUC2, but also ANT. The observation that BAP treatment did not complement the ovule 262 

number phenotype of ant-4 suggests that ANT functions independently of CUC1 and CUC2. This is 263 

further supported by the additive effects on the reduction in ovule number observed in ant-4 cuc2-1 264 

pSTK:CUC1_RNAi plants (Galbiati et al., 2013). Together these data suggest that ANT promotes cell 265 

proliferation, whereas CUC1 and CUC2 regulate CKs homeostasis and auxin transport. Although 266 

CUC3 shares high similarity with CUC1 and CUC2, the cuc3 mutant was not affected in ovule 267 

initiation and number, but together with CUC2, CUC3 promotes ovule separation; this is reflected by 268 

the cuc2 cuc3 double mutant, which produces seeds that result from the fusion of two ovules 269 

(Gonçalves et al., 2015). These results suggest that specific CUC genes independently promote ovule 270 

initiation and ovule separation.  271 
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In 2009, Lee et al. identified LATERAL ORGAN FUSION 1 (LOF1) to be involved in lateral 272 

organ separation and to functionally overlap with CUC2 and CUC3. The LOF1 gene is expressed at 273 

the base of ovule primordia and its overexpression results in a wrinkled pistil with an enlarged replum, 274 

an amorphous septum and an irregular ovule distribution (Gomez et al., 2011). 275 

 276 

The role of gibberellins in ovule primordium formation 277 

Gibberellins (GAs) are involved in key developmental processes throughout the plant life 278 

cycle, from seed germination in particular, to flowering time (reviewed in Hedden and Sponsel, 2015; 279 

Rizza and Jones, 2019), but their involvement in ovule initiation has only recently been demonstrated. 280 

In 2018, Gomez and colleagues showed that DELLA proteins, which belong to a subfamily of the 281 

plant-specific GRAS family of transcriptional regulators that repress GA-signalling, positively 282 

regulate ovule number in Arabidopsis. In addition to DELLA proteins, the GA signalling core 283 

includes the GA receptor GID1. When GID1 binds bioactive GA, the GA–GID1–DELLA complex 284 

is formed and triggers the polyubiquitination and degradation of DELLA proteins. The della triple 285 

mutant gaiT6 rgaT2 rgl2-1 produces fewer ovules than wild type (Gomez et al., 2018). By contrast, 286 

the gain-of-function DELLA mutant gai-1, which cannot be degraded upon GA sensing, produced 287 

more ovules. Consistent with this observation, the double gid1a gid1b mutant, which cannot perceive 288 

GA, forms more ovules than the wild type, demonstrating a negative correlation between GAs and 289 

ovule number (Gomez et al., 2018). The GAI, RGA, RGL2, GID1a and GID1b genes are expressed 290 

in placental tissue and outgrowing ovules. The reduction in ovule number was more dramatic in the 291 

gaiT6 rgaT2 rgl2-1 triple mutant than that in ovary length, resulting in a lower ovule density, whereas 292 

the dominant gai-1 mutant has an increased ovule/placenta ratio, suggesting that GAs predominantly 293 

affect ovule initiation and not placenta elongation.  294 

Other evidence to demonstrate that DELLA proteins promote ovule formation derive from an 295 

experiment in which the expression of the stable mutant protein rgaΔ17 under the control of the ANT 296 

promoter in the placenta, resulted in the formation of 20% more ovules than in control lines (Gomez 297 

et al., 2018). This effect of GAs on the number of developing ovules was not correlated with auxin 298 

signalling or transport, and neither PIN1 localisation nor DR5 expression was affected by GA 299 

treatment or DELLA activity (Gomez et al., 2018).  300 

Confirmation of a positive role for RGL2 in determining ovule number came from the analysis 301 

of transgenic lines in which RGL2-dependent GA signalling was blocked by the expression of a 302 

dominant version of RGL2 (pRGL2:rgl2Δ17)(Gómez et al., 2019). Pistils of pRGL2:rgl2Δ17 plants 303 

contained 10% more ovules than those of the wild type, whereas pistil length did not differ, indicating 304 

that the main function of rgl2Δ17 is to positively promote ovule primordium formation but not 305 
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placenta elongation (Gómez et al., 2019). Furthermore, Gomez et al. (2018) identified 306 

REPRODUCTIVE MERISTEM 22 (REM22) and UNFERTLIZED EMBRYO SAC 16 (UNE16) via 307 

transcriptomic analysis to be DELLA targets that are positive regulators of ovule initiation. REM22 308 

is a B3 family transcription factor that is expressed in the placenta (Mantegazza et al., 2014) and 309 

increased REM22 expression in the rem22-1 enhancer allele significantly increases ovule number. 310 

UNE16 is a transcription factor involved in embryo sac development and the knockdown allele 311 

une16-1 produces fewer ovules. Because UNE16 expression is regulated by BRs (Pagnussat, 2005; 312 

Sun et al., 2010), it represents a potential nexus for crosstalk between GAs and BRs in ovule initiation. 313 

The establishment of GA as an important additional component of the ovule regulatory network has 314 

introduced an additional layer of complexity to the current model for ovule initiation and it remains 315 

to be established how GAs integrate into this model. GAs might function antagonistically to CKs and 316 

BRs, which in contrast to GAs, positively regulate pistil size and ovule number.  317 

Finally, the ctr1-1 constitutive ethylene-responsive mutant possesses a shorter gynoecium at 318 

anthesis compared to wild type and a delay in the response to GA3 treatment that induces gynoecium 319 

senescence, suggesting that ethylene affects gynoecium size probably via interactions with GA 320 

pathways (Carbonell-Bejerano et al., 2011). 321 

In conclusion, there is ample evidence for complex interactions between different hormonal 322 

pathways that together determine ovule number and pistil size. 323 

 324 

Ovule number: the ecotype matters 325 

It has been known for twenty years that the number of ovules varies hugely among different 326 

Arabidopsis ecotypes (diploid accessions) (Alonso-Blanco et al., 1999): for example, the Landsberg 327 

erecta accession produces 20% more ovules than the Cape Verde Islands (Cvi) accession. Recently, 328 

189 Arabidopsis accessions from the Arabidopsis Biological Resource Center were analysed for 329 

differences in ovule number and they display a remarkable degree of variation, ranging from 39–82 330 

ovules per pistil (Yuan and Kessler, 2019). The commonly used reference accession Col-0 lies in the 331 

middle of the range, with a mean ovule number of 63, which is strongly dependent on experimental 332 

growth conditions. Ovule number, in contrast to, for instance, flowering time, does not correlate with 333 

geographical origin (Stinchcombe et al., 2004; Yuan and Kessler, 2019). By conducting a genome-334 

wide association study (GWAS) on these 189 accessions, two loci associated with ovule number were 335 

identified (Yuan and Kessler, 2019): NEW ENHANCER OF ROOT DWARFISM (NERD1) and 336 

OVULE NUMBER ASSOCIATED 2 (ONA2). Mutation of NERD1 or ONA2 leads to a significant 337 

reduction in ovule number, with a stronger phenotype in the nerd1-2 and nerd1-4 alleles. ONA2 338 

encodes a protein of unknown function and was not further analyzed. In addition to a reduction in 339 
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ovule number, nerd mutants display additional severe male and female fertility defects. NERD1 340 

encodes an integral membrane protein mainly localised to the Golgi. Notably, NERD1 expression is 341 

lower in Altai-5 and Kas-2 accessions, which have low ovule numbers (Yuan and Kessler, 2019), but 342 

high NERD1 expression in Altai-5 leads to a significant increase in ovule number. However, 343 

overexpression of NERD1 in Col-0 plants did not affect ovule number, indicating that NERD1 344 

function in determining ovule number is background-dependent (Yuan and Kessler, 2019).  345 

Considerable genetic variation in ovule number was also described for F1 triploids of different 346 

A. thaliana genotypes by Duszynska et al. (2013), who observed differences in ovule number between 347 

genetically identical F1-hybrid offspring, after crossing parental genome excess lines (2m:1p with 348 

1m:2p). These effects can only be explained by epigenetic mechanisms that affect genes controlling 349 

ovule number, for example DNA or histone methylation. The analysis of null alleles of ASH1 350 

HOMOLOG 2 (ASH2), which show a remarkable 80% reduction in ovule number, provided a clear 351 

example of the involvement of histone methylation in determining ovule number (Grini et al., 2009). 352 

The  transcriptional state of the ASH2 locus remains active during development via H3K36 353 

trimethylation (Xu et al., 2008). It will be highly relevant to study the effect of epigenetic 354 

modifications induced by biotic and abiotic stresses in determining ovule number. Epigenetic 355 

responses to stress are fundamental to create the plasticity required for plant survival, especially 356 

considering that plants are sessile organisms. These epigenetic changes can be temporally transmitted, 357 

even in the absence of the original stress (Iglesias and Cerdán, 2016). Furthermore, variation in ovule 358 

number in response to fluctuations in environmental conditions, such as temperature, can be used to 359 

understand the plasticity and inheritability of (epigenetic) adaptation and response to temperature 360 

stress. Variation in ovule number under stress conditions is, of course, also highly relevant from an 361 

ecological, environmental and evolutional perspective. 362 

 363 

Ovule number decreases with ageing 364 

Ovule number varies throughout inflorescence development: early flowers developing on the 365 

main inflorescence (from the fifth to the twenty-fifth flower) of Arabidopsis Ler plants produced a 366 

relatively invariable number of ovules, whereas flowers that developed later had pistils with fewer 367 

ovules (Gomez et al., 2018; Yuan and Kessler, 2019). Loss- and gain-of-function mutants of DELLA 368 

genes showed an increase in ovule number in early and late-arising flowers (Gomez et al., 2018). To 369 

minimize age-related variation in their genome-wide association studies, Yuan and Kessler (2019) 370 

only counted ovules in flowers 6 to 10 from the main inflorescence.  371 
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It has been reported for other plant species that flower position as well as size influence ovule 372 

number per flower. For example, in Pomegranate, the number of ovules per flower was significantly 373 

influenced by flower size, with more ovules being produced in larger flowers (Wetzstein et al., 2013). 374 

Overall, when studying changes in ovule numbers it is important to be aware of the possible 375 

variation in the different flowers of the plant. Therefore, large numbers will have to be analyzed using 376 

thorough statistical analyses, especially for genotypes that show only relative minor changes. 377 

 378 

A ‘gold mine’ for seed yield improvement within the Brassicaceae 379 

Improving seed yield via the genetic manipulation of crops has historically been a central goal 380 

in agricultural research. The enormous body of data, which have been generated and shared by the 381 

scientific community over the past decades, represents a true ‘gold mine’ for translational and applied 382 

research. The determination of pistil size and ovule number may be considered one of the most 383 

straightforward traits that can be enhanced to improve overall seed yield in species characterized by 384 

multi-ovulate ovaries and the increasing amount of literature on this topic evidences an active and 385 

prolific research field. Although some questions concerning the networks controlling seed number 386 

and pistil size remain open, comprehensive knowledge of the phytohormone interactions involved in 387 

these pathways is already available and applicable (Cucinotta et al., 2014; Zúñiga-Mayo et al., 2019; 388 

Reyes-Olalde and de Folter, 2019). 389 

Understanding these developmental processes in Arabidopsis can inform promising strategies 390 

for knowledge transfer to closely related and agronomically important crops. Brassica napus, another 391 

Brassicaceae species, commonly known as rapeseed, is an important breeding target, since it is a crop 392 

widely cultivated in Europe, Asia, Canada and Australia. It is characterised by an oil-rich seed and 393 

its processing provides both rapeseed oil (used as edible vegetable oil or as biodiesel) and a by-394 

product mostly used as cattle fodder (Snowdon et al., 2007).  395 

It has recently been demonstrated that Arabidopsis and B. napus share well-conserved 396 

response mechanisms to cytokinin treatment (Zuñiga-Mayo et al., 2018). Strikingly, exogenous 397 

cytokinin application causes a reduction in silique length in B. napus. However, these shorter siliques 398 

contain increased ovule numbers and upon manual pollination, the plants show an increase in seed 399 

yield of 18%. Intriguingly, increases in ovule and seed number have also been observed in the 400 

offspring of the treated plants, suggesting that the mechanism has an underlying epigenetic basis 401 

(Zuñiga-Mayo et al., 2018).  402 

An increase in CKs level has also been reported to beneficially affect seed yield in transgenic 403 

B. napus lines expressing the CKs biosynthetic enzyme isopentenyltransferase (IPT) under the A. 404 
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thaliana promoter of the AtMYB32 gene. An increase in seed yield of up to 23% was obtained in the 405 

transgenic lines that were analysed (Kant et al., 2015). 406 

CKs homeostasis is mediated by CYTOKININ OXIDASES/DEHYDROGENASES (CKXs) 407 

during pistil and silique development in A. thaliana. Remarkably, the expression level of CKX genes 408 

in B. napus is associated with silique length, and RNA-sequencing and qRT-PCR analyses revealed 409 

a significantly different expression level of BnCKX5-1, 5-2, 6-1, and 7-1 in two distinct cultivated 410 

varieties with long versus short siliques (Liu et al., 2018). These findings open up promising strategies 411 

with which to modulate silique length in B. napus by manipulating CKX gene expression. 412 

In addition to phytohormones, genetic knowledge from Arabidopsis can be successfully 413 

applied to B. napus crop improvement. Mutations in the K-box of the Arabidopsis orthologue of 414 

APETALA1 in B. napus caused a significant increase in the number of seeds per plant (Shah et al., 415 

2018). These generated alleles could conceivably be introduced into a rapeseed breeding programme 416 

in field trials.  417 

Germplasm of B. napus revealed substantial natural variation with respect to seed number per 418 

pod. Current rapeseed cultivars produce on average 20 seeds per pod, which is far lower than the 419 

maximum observed among the germplasm resources (Yang et al., 2017). Moreover, genetic 420 

improvement promises to deliver a massive improvement in seed yield (Yang et al., 2017). The gold 421 

mine of knowledge obtained from the closely related species Arabidopsis will certainly be 422 

fundamentally important in the exploitation of the encouraging genetic variation potential. 423 

Furthermore, it has recently been demonstrated that CRISPR-Cas9 technology can be efficiently 424 

applied to precisely induce targeted mutation in rapeseed (Braatz et al., 2017), making it a powerful 425 

tool for future genetic improvement. Similarly, existing knowledge could be used to improve other 426 

Brassicaceae species, or even non-phylogenetically related species such as soybean. 427 

 428 
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Table 1. Genes involved in determining gynoecium size and/or ovule number. 437 

Gene 

Name 

Family or protein type Gynoecium size Ovule number Reference 

ANT AP2 /EREBP 

transcription factor 
ant-9   

ant-4   

35S::ANT  

ant-1   

ant-3   

ant-4   

ant-9   

 

(Elliott et al., 1996; 

Liu et al., 2000; 

Azhakanandam et al., 

2008; Krizek, 2009; 

Wynn et al., 2014) 

ARGOS ARGOS 

protein 
35S::ARGOS   (Hu et al., 2003) 

CRC YABBY transcription factor crc-1   (Gross et al., 2018) 

SPT bHLH transcription factor spt-2   spt-2   (Heisler et al., 2001; 

Alvarez and Smyth, 

2002; Nahar et al., 

2012) 

ETT 

(ARF3) 

 

ARF transcription factor ett-1  

ett-2  

 (Sessions et al., 1997; 

Nemhauser et al., 

2000) 

HEC1, 

HEC2, 

HEC3 

bHLH transcription factor  

hec1 hec2 hec3  

 (Gremski et al., 

2007) 

ARR1, 

ARR10, 

ARR12 

Type-B ARR transcription 

factor 

 

arr1 arr10 arr12  

 

arr1 arr10 arr12  

(Reyes-Olalde et al., 

2017) 

CRF2, 

CRF3, 

CRF6 

ERF 

transcription factor 

 

crf2 crf3 crf6  

 

crf2 crf3 crf6  

(Cucinotta et al., 

2016) 

PIN1 PIN 

Auxin efflux carrier 

 

pin1   

 

pin1  

pin1-5   

(Okada et al., 1991; 

Bencivenga et al., 

2012; Cucinotta et 

al., 2016) 

CKX3, 

CKX5 

CKX 

Cytokinin 

oxidase/dehydrogenase 

protein 

 

ckx3 ckx5  

 

ckx3 ckx5  

(Bartrina et al., 2011) 

UGT85A3, 

UGT73C1 

UDP-glucosyl transferase  

35S::UGT85A3  

35S::UGT73C1  

 

35S::UGT85A3  

35S::UGT73C1  

(Cucinotta et al., 

2018) 

SAUR8, 

SAUR10, 

SAUR12 

SAUR-like auxin-responsive 

protein family 

 

35S::SAUR8  

35S::SAUR10  

35S::SAUR12  

 (van Mourik et al., 

2017) 

BZR1 Brassinosteroid signalling 

regulatory protein 

 

bzr1-1D  

 

bzr1-1D  

(Huang et al., 2013) 

BIN2 ATSK (shaggy-like kinase) 

family 

 

bin2  

 

bin2  

(Huang et al., 2013) 

DET2 3-oxo-5-alpha-steroid 4-

dehydrogenase protein 

 

det2  

 

det2  

(Huang et al., 2013) 

BRI1 Leucine-rich receptor-like 

protein kinase protein 

 

 

bri1-5  

 

bri1-5  

(Huang et al., 2013) 

CYP85A2 Cytochrome p450 enzyme   

cyp85a2-1  

cyp85a2-2  

(Nole-Wilson et al., 

2010b) 

SEU Transcriptional adaptor  

seu-1   

 

seu-1   

(Nole-Wilson et al., 

2010b) 

CTR1 RAF homolog 

of serine/threonine kinase 

 

ctr1-1  

 (Carbonell-Bejerano 

et al., 2011) 
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REV Homeobox-leucine zipper 

protein 

  

ant rev  

(Nole-Wilson et al., 

2010a) 

LUG WD40/YVTN repeat-like-

containing domain 

transcription factor 

  

lug-1  

lug-3  

(Azhakanandam et 

al., 2008) 

PAN bZIP transcription factor  

ant pan  

seu pan  

 

ant pan  

seu pan  

(Wynn et al., 2014) 

HLL Ribosomal protein 

L14p/L23e 

 

hll  

 

hll  

(Schneitz et al., 1998; 

Skinner et al., 2001) 

SIN2 P-loop containing nucleoside 

triphosphate hydrolase 

superfamily protein 

 

sin-2  

 

sin-2  

(Broadhvest et al., 

2000) 

YUC1, 

YUC4 

Flavin-binding 

monooxygenase protein 

 

  

yuc1 yuc4  

(Cheng et al., 2006) 

AHK2, 

AHK3, 

CRE1 

Histidine kinase   

cre1-12 ahk2-2  

ahk3-3  

(Bencivenga et al., 

2012) 

CUC1, 

CUC2 

NAC transcription factor   

cuc1 cuc2  

pSTK::CUC1/RNAi 

cuc2-1  

 

(Galbiati et al., 2013) 

MIR164A microRNA 

 

  

35S::MIR164A  

(Gonçalves et al., 

2015) 

GAI, RGA, 

RGL2 

GRAS 

transcription factor 

 

gaiT6 rgaT2 rgl2-1  

 

 

gaiT6 rgaT2 rgl2-1  

 

(Gomez et al., 2018) 

GID1A, 

GID1B 

alpha/beta-Hydrolase 

superfamily protein 

  

gid1ab  

 

(Gomez et al., 2018) 

REM22 B3 protein transcription 

factor 

  

rem22-1  

(Gomez et al., 2018) 

UNE16 Homeodomain-like 

superfamily protein 

  

une16-1  

(Gomez et al., 2018) 

NERD1 GW repeat- and PHD-

finger-containing protein 

NERD 

  

nerd1-2  

nerd1-4  

(Yuan and Kessler, 

2019) 

ONA2 Unknown protein   

ona2  

(Yuan and Kessler, 

2019) 

ASHH2 Hystone-lysine N-

methyltransferase 

  

ashh2  

(Grini et al., 2009) 

     

 438 

Table 1. Up- and downwards-pointing arrows represent how mutant phenotype impact either 439 

gynoecium size or ovule number.  440 

  441 
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 442 

Legend 443 

Figure 1. Proposed model for the regulation of pistil growth and ovule primordium initiation.  444 

A gynoecium of Arabidopsis thaliana is shown on the left while an image on the right depicts ovule 445 

primordia; in the centre, the interconnected gene network that regulates the two processes is shown. 446 

Auxin, through ETT, regulates gynoecium fusion and elongation by repressing IND, HECs and SPT, 447 

which in turn modulate polarisation of the auxin efflux carrier PIN1 via repressing PID. CK positively 448 

regulates PIN1 expression. In particular, the CK response mediated by CRFs and ARRs is directly 449 

required for pistil elongation and indirectly affects ovule primordium initiation. CRF2 regulation by 450 
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MP further integrate the auxin-CK crosstalk. Moreover, MP directly regulates CUC1 and CUC2 451 

expression. In turn, CUCs control PIN1 expression and PIN1 protein localisation, which is required 452 

for correct ovule primordium development. CUCs positively influence the CK pathway by 453 

transcriptionally repressing the CK-inactivating glycosyltransferase enzymes (UGTs). ANT, whose 454 

expression is controlled by auxin and BRs, is required for cell division in ovule primordia. ANT is 455 

also regulated by auxin via MP and ARGOS. BRs signalling also positively affect pistil elongation. 456 

GA has a negative effect on ovule number, but its connection with other hormones remains to be 457 

addressed.  458 
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