9 research outputs found

    Fine sediment deposition and interstitial flow effects on macroinvertebrate community composition within riffle heads and tails

    Get PDF
    The distribution of macroinvertebrates in the heads and tails of riffles were examined in an in-situ field experiment under stable baseflow conditions. Paired colonisation cylinders were used to examine the influence of vertical hydraulic exchange (upwelling and downwelling) and horizontal interstitial flow on the patterns of sedimentation and invertebrate colonisation. Sedimentation rates were greatest in cylinders permitting vertical and horizontal flow (VHE cylinders) and were significantly lower (29%) in cylinders where only vertical flow and ingress of fine sediment were possible (VE cylinders). The results demonstrate that horizontal interstitial flows represent an important pathway for fine sediment transport. Differences in fine sediment accumulation were also observed between riffle heads and tails. Significantly higher sedimentation rates were recorded in riffle tails, with the macroinvertebrate communities characterised by larger proportions of fine sediment tolerant taxa. In contrast, riffle head communities were characterised by greater proportions of sediment sensitive taxa, and in the case of VHE cylinders, shredders and EPT taxa. The results demonstrate that spatial differences in fine sediment deposition are evident at the riffle scale as a function of vertical and horizontal subsurface flows and that these factors play a key role in the distribution of macroinvertebrate fauna

    Predator, prey and substrate interactions: the role of faunal activity and substrate characteristics

    Get PDF
    Many taxa possess a range of strategies to reduce the risk of predation, including actively seeking suitable refuge habitats; however, the global spread of invasive species may disrupt these behavioral responses. In lotic ecosystems, interstitial spaces in the substrate are important refugia for small organisms. Some predators are ecosystem engineers that exhibit zoogeomorphic agency—the ability to modify the geomorphology of their environment. It is therefore possible that direct ecological effects of predators on prey may be realized through modifications to the prey's habitat, including the availability of refugia, by predators that are zoogeomorphic agents or via external stressors such as fine sediment loading. This study examined three research questions in a mesocosm study across a gradient of sediment‐stress treatments: (1) What affects do predators (Pacifastacus leniusculus, invasive crayfish) and prey (Gammarus pulex, amphipods) have on the ingress of fine sediment into gravel substrates and therefore on available interstitial refugia? (2) Do prey taxa seek refuge from (invasive) predators in the form of vertical movement into subsurface sediments? and (3) How does fine sediment ingress influence predator–prey interactions and prey survival through predator avoidance behavior. Here, we provide direct evidence demonstrating that fine sediment ingress into gravel river beds can be facilitated by zoogeomorphic activity with P. leniusculus increasing the infiltration of fine sand particles (but not coarse sand) during foraging activities. Predator–prey interactions were found to be a primary factor mediating zoogeomorphic activity, with the isolation of crayfish from prey (G. pulex) leading to increased fine sand ingress. When present with signal crayfish, G. pulex displayed vertical avoidance behavior, entering subsurface substrates to evade predation by P. leniusculus. Coarse sand treatments resulted in higher predation rates of G. pulex, most likely due to clogging of interstitial pore spaces between gravels limiting the effectiveness of the prey's vertical avoidance behavior strategy. A new conceptual model that captures the interactions between predator, prey, zoogeomorphic processes and habitat availability is presented. This model highlights how predator–prey interactions can be strongly mediated by dynamic bi‐directional interactions between organisms and the physical environment they inhabit as ecological and geomorphological processes are intrinsically linked

    Benthic and hyporheic macroinvertebrate distribution within the heads and tails of riffles during baseflow conditions

    Get PDF
    The distribution of lotic fauna is widely acknowledged to be patchy reflecting the interaction between biotic and abiotic factors. In an in-situ field study, the distribution of benthic and hyporheic invertebrates in the heads (downwelling) and tails (upwelling) of riffles were examined during stable baseflow conditions. Riffle heads were found to contain a greater proportion of interstitial fine sediment than riffle tails. Significant differences in the composition of benthic communities were associated with the amount of fine sediment. Riffle tail habitats supported a greater abundance and diversity of invertebrates sensitive to fine sediment such as EPT taxa. Shredder feeding taxa were more abundant in riffle heads suggesting greater availability of organic matter. In contrast, no significant differences in the hyporheic community were recorded between riffle heads and tails. We hypothesise that clogging of hyporheic interstices with fine sediments may have resulted in the homogenization of the invertebrate community by limiting faunal movement into the hyporheic zone at both the riffle head and tail. The results suggest that vertical hydrological exchange significantly influences the distribution of fine sediment and macroinvertebrate communities at the riffle scale

    Temporal variability in lotic macroinvertebrate communities associated with invasive signal crayfish (Pacifastacus leniusculus) activity levels and substrate character

    Get PDF
    Invasive signal crayfish (Pacifastacus leniusculus) are considered to be the most prevalent non-native crayfish species in Europe. Where large populations become established they have significant and long-term effects on benthic macroinvertebrate communities. However, much less is known about how community effects associated with crayfish invasion change in the short-term as a function of varying activity levels during the summer months. We examined the macroinvertebrate community composition of two lowland UK rivers, one which supported a well-established non-native crayfish population (invaded) and one in which crayfish had not been recorded (control). Colonisation cylinders were deployed which recorded community composition over a 126-day time period. Results indicate that once the activity period commences, invasive crayfish consistently altered macroinvertebrate community structure regardless of substrate character. Invaded communities displayed reduced beta-diversity compared to control sites. However, effects on the macroinvertebrate assemblage varied over the period when crayfish were active probably reflecting the behavioural activity of crayfish (which intensifies with increasing water temperature and during the spawning season) and life histories of other macroinvertebrates. The results indicate that crayfish invasions modify macroinvertebrate community composition, but over shorter timescales, the effects vary associated with their activity levels

    The role of fine sediment characteristics and body size on the vertical movement of a freshwater amphipod

    Get PDF
    1. Sedimentation and clogging (colmation) of interstitial pore spaces with fine sediment particles is widely considered to be one of the most significant threats to lotic ecosystem functioning. This paper presents the results of a running water mesocosm study examining the effect of benthic and hyporheic fine sediment loading and particle size on the vertical movement and distribution of the freshwater amphipod Gammarus pulex. 2. A gradient of fine sediment loading and different particle sizes were used to examine the ability of G. pulex from two body size classes to access and migrate vertically within subsurface sediments. 3. We tested three hypotheses: i) sediment loading would modify the distribution of G. pulex by limiting vertical movement; ii) the deposition of large particles and heterogenous sediments would limit the vertical movement of individuals more than homogeneous fine grained sediments; and iii) large bodied individuals would be prevented from migrating vertically with increasing sediment loading and particle size / heterogeneity. 4. Sediment loading, particle size and heterogeneity of deposited sediment had a significant effect on the vertical movement of individuals, with heterogeneous sand (0.125 - 4 mm) acting as the strongest barrier to the vertical movement of individuals through the infilling and clogging of interstitial spaces followed by coarse (1 - 4mm) and fine sand (0.125 - 4 mm). 5. Fine sediment loading and particle size acted as a filter on body size and limited the ability of large bodied individuals to migrate vertically to a greater extent than small bodied individuals. 6. This study demonstrates that the effects of fine sediment on habitat availability and faunal movement is dependent on both sedimentological characteristics and an individual’s body size. The results illustrate the importance of both abiotic and biotic factors when evaluating the ecological 66 effects of fine sediment deposition

    Substrate preferences of coexisting invasive amphipods, Dikerogammarus villosus and Dikerogammarus haemobaphes, under field and laboratory conditions

    Get PDF
    Two Ponto-Caspian amphipods, Dikerogammarus villosus and Dikerogammarus haemobaphes, have expanded their geographical ranges from eastern Europe into Great Britain in recent years. This study represents one of the first examining the distribution and habitat preferences of coexisting populations of D. haemobaphes and D. villosus via field and laboratory experiments in the UK. Field surveys of a recently invaded lowland reservoir in the UK are complimented with ex situ laboratory mesocosm experiments examining the substrate preferences of coexisting populations of D. villosus and D. haemobaphes. Results from the field study indicated that D. haemobaphes dominated the macroinvertebrate community within the reservoir and demonstrated a strong affinity for large cobble and artificial substrates. D. villosus occurred at lower abundances but displayed a strong preference for coarse cobble substrates. A third invasive amphipod, Crangonyx pseudogracilis, was largely confined to sand/silt habitats. Laboratory mesocosm experiments clearly supported the field observations of D. villosus and D. haemobaphes with both species demonstrating a preference for cobble substrates. Results from the study highlight the importance of characterising physical habitat when investigating biological invasions and suggest that habitat availability may influence the extent and speed at which range expansion of new amphipod invaders occurs

    The implications of an invasive species on the reliability of macroinverterbrate biomonitoring tools used in freshwater ecological assessments.

    Get PDF
    Invasive species represent one of greatest threats to aquatic biodiversity globally and are widely acknowledged to be instrumental in modifying native community structure. Despite this, little is known about how the increasing range expansion of invasive taxa may affect routine biomonitoring tools widely employed to measure or quantify environmental quality in lotic systems. This study examined the impact of an invasive freshwater crayfish on commonly employed riverine macroinvertebrate biomonitoring tools (scores and indices) designed to respond to a range of stressors. Data from long term monitoring sites on both ‘control’ and invaded rivers in England were examined to assess changes to biomonitoring scores following invasion by signal crayfish (Pacifastacus leniusculus). Results indicate that routine biomonitoring tools used to quantify potential ecological stressors which are weighted by abundance, such as the Lotic-invertebrate Index for Flow Evaluation (LIFE) score and Proportion of Sediment-sensitive Invertebrates (PSI), were subject to significant inflation following invasion. In contrast, indices based simply on the presence of taxa, such as the Average Score Per-Taxon (ASPT - a derivative of BMWP), displayed no changes compared to control rivers; or in the case of the Biological Monitoring Working Party Score (BMWP), NTAXA and EPT richness, no consistent pattern following invasion. Season had a significant effect on the interaction of crayfish and LIFE and PSI scores. Autumn samples were subject to statistical inflation following crayfish invasion whilst Spring samples exhibited no significant change. The results suggest that care should be taken when interpreting routine macroinvertebrate biomonitoring data where non-native crayfish are present, or in instances where their presence is suspected

    The long-term effects of invasive signal crayfish (Pacifastacus leniusculus) on instream macroinvertebrate communities

    Get PDF
    Non-native species represent a significant threat to indigenous biodiversity and ecosystem functioning worldwide. It is widely acknowledged that invasive crayfish species may be instrumental in modifying benthic invertebrate community structure, but there is limited knowledge regarding the temporal and spatial extent of these effects within lotic ecosystems. This study investigates the long term changes to benthic macroinvertebrate community composition following the invasion of signal crayfish, Pacifastacus leniusculus, into English rivers. Data from long-term monitoring sites on 7 rivers invaded by crayfish and 7 rivers where signal crayfish were absent throughout the record (control sites) were used to examine how invertebrate community composition and populations of individual taxa changed as a result of invasion. Following the detection of non-native crayfish, significant shifts in invertebrate community composition were observed at invaded sites compared to control sites. This pattern was strongest during autumn months but was also evident during spring surveys. The observed shifts in community composition following invasion were associated with reductions in the occurrence of ubiquitous Hirudinea species (Glossiphonia complanata and Erpobdella octoculata), Gastropoda (Radix spp.), Ephemeroptera (Caenis spp.), and Trichoptera (Hydropsyche spp.); although variations in specific taxa affected were evident between regions and seasons. Changes in community structure were persistent over time with no evidence of recovery, suggesting that crayfish invasions represent significant perturbations leading to permanent changes in benthic communities. The results provide fundamental knowledge regarding non-native crayfish invasions of lotic ecosystems required for the development of future management strategies

    The aquatic macroinvertebrate biodiversity of urban ponds in a medium-sized European town (Loughborough, UK)

    No full text
    Urbanisation is one of the greatest threats to freshwater biodiversity, with the area of land covered by towns and cities predicted to increase significantly in the future. Ponds are common features in the urban landscape and have been created for a variety of reasons ranging from ornamental/amenity purposes through to the detention of urban runoff and pollution. This paper aims to quantify the aquatic macroinvertebrate biodiversity associated with garden, ornamental and other urban ponds in Leicestershire, UK. We examined the macroinvertebrate biodiversity of 41 urban ponds (13 garden, 12 park and 16 other urban ponds) within the town of Loughborough, UK. Park ponds supported greater macroinvertebrate richness than garden or other urban ponds. Garden ponds were the most taxon poor. Pond size was strongly correlated with macroinvertebrate diversity. Collectively, urban ponds were found to be physically and biologically heterogeneous and were characterised by high community dissimilarity. Urban ponds provide a diverse range of habitats for a mixture of common and rare aquatic macroinvertebrate taxa and represent a valuable biodiversity resource within anthropogenically dominated landscapes. Recognition of the significant contribution of ponds to urban freshwater biodiversity is important for future aquatic conservation within anthropogenically dominated landscapes
    corecore