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Abstract 56 

Invasive species represent one of greatest threats to aquatic biodiversity globally and are widely 57 

acknowledged to be instrumental in modifying native community structure. Despite this, little is 58 

known about how the increasing range expansion of invasive taxa may affect routine 59 

biomonitoring tools widely employed to measure or quantify environmental quality in lotic 60 

systems. This study examined the impact of an invasive freshwater crayfish on commonly 61 

employed riverine macroinvertebrate biomonitoring tools (scores and indices) designed to 62 

respond to a range of stressors. Data from long term monitoring sites on both ‘control’ and 63 

invaded rivers in England were examined to assess changes to biomonitoring scores following 64 

invasion by signal crayfish (Pacifastacus leniusculus). Results indicate that routine biomonitoring 65 

tools used to quantify potential ecological stressors which are weighted by abundance, such as 66 

the Lotic-invertebrate Index for Flow Evaluation (LIFE) score and Proportion of Sediment-67 

sensitive Invertebrates (PSI), were subject to significant inflation following invasion. In contrast, 68 

indices based simply on the presence of taxa, such as the Average Score Per-Taxon (ASPT - a 69 

derivative of BMWP), displayed no changes compared to control rivers; or in the case of the 70 

Biological Monitoring Working Party Score (BMWP), NTAXA and EPT richness, no consistent 71 

pattern following invasion. Season had a significant effect on the interaction of crayfish and LIFE 72 

and PSI scores. Autumn samples were subject to statistical inflation following crayfish invasion 73 

whilst Spring samples exhibited no significant change. The results suggest that care should be 74 

taken when interpreting routine macroinvertebrate biomonitoring data where non-native crayfish 75 

are present, or in instances where their presence is suspected. 76 

 77 

Keywords. non-native taxa, crayfish, macroinvertebrate, seasonal sampling, WFD, biological 78 
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1. Introduction 90 

Invasive species are considered to be one of the greatest threats to global biodiversity (Simberloff 91 

et al., 2013). The extent of biological invasions has increased rapidly over the last century and it 92 

is likely that this rate will continue in the future (Pysek and Richardson, 2010). The translocation 93 

of non-native taxa can have significant and far reaching implications for the functioning of invaded 94 

ecosystems including habitat modifications, acting as vectors in the transmission of disease, and 95 

altering assemblage composition through predation and resource competition (Manchester and 96 

Bullock, 2000). The spatial and biological implications of invasions are driven and influenced by 97 

natural and anthropogenic global environmental change (Lapointe et al., 2012). Anthropogenic 98 

modifications are altering the structure of many aquatic ecosystems (Friberg, 2014) and 99 

biomonitoring programmes that assess the status of freshwater water bodies have become an 100 

essential means of monitoring and evaluating such pressures (Buss, 2015). 101 

 102 

Benthic macroinvertebrates are one of the most commonly employed freshwater groups globally 103 

(Carter et al., 2006) and in Europe are designated as one of the biological quality elements 104 

employed in the implementation of the EU Water Framework Directive (WFD; EU, 2000). The 105 

occurrence of indicative aquatic invertebrate taxa and assemblages based upon functional traits 106 

and life histories have enabled the development of a multitude of biomonitoring tools used for the 107 

identification and quantification of a range of anthropogenic disturbances and stressors (Bonada 108 

et al., 2006). However, species expansion, in particular invasive species, may significantly 109 

compromise the use of aquatic macroinvertebrates as bioindicators (MacNeil et al., 2013). 110 

Selective predation by many invasive taxa such as crayfish (e.g Procambarus clarkii, Orconectes 111 

limosus; Pacisfastcus leniusculus) is likely to modify communities (Gheradi and Acquistapace, 112 

2007; Ercoli et al., 2015) and may thereby reduce the effectiveness of commonly employed 113 

biomonitoring indices to accurately characterise the pressures they were designed to assess.  114 

Crayfish are one of the largest freshwater invertebrates, typically dominating the biomass of 115 

benthic communities where they occur (Momot, 1995, Holdich, 2002). They are widely considered 116 

to be keystone species in both lotic and lentic habitats due to their size, population density and 117 

functional role in the ecosystem (Stenroth and Nyström, 2003). Invasive crayfish have been 118 

widely documented to reduce the biomass and richness of other aquatic macroinvertebrates and 119 

macrophytes (Twardocleb et al., 2013; Ercoli et al., 2015). Consequently, their introduction may 120 

have substantial effects on aquatic environments and communities. Although it is widely 121 

acknowledged that invasive crayfish species may be instrumental in modifying freshwater 122 

invertebrate community structure, little attention has been given to whether these potential 123 

community modifications influence the effectiveness of widely utilised biomonitoring tools. The 124 

aim of this study was to determine whether the performance of six commonly employed 125 

macroinvertebrate biomonitoring tools used in the routine ecological assessment and 126 
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management of freshwaters have been affected following invasion of the signal crayfish 127 

(Pacisfastcus leniusculus) in English rivers. 128 

 129 

2. Methods 130 

2.1. Data 131 
The main dataset employed in this study was derived from the Environment Agency of England 132 

and Wales ‘BIOSYS’ database. The data-set comprised 846 samples (380 and 467 from invaded 133 

and control samples respectively) with the majority of samples collected between 1990 and 2013 134 

(three sites had data extending back to the 1970’s and an additional four sites had data from the 135 

mid 1980’s). Nine invaded sites and eight reaches where signal crayfish were absent throughout 136 

the record (control sites) from three English regions (East, North West and South East England) 137 

formed the basis of the analysis. The sites reflected different geological, hydrological and 138 

biogeographical characteristics regionally and were subject to no other significant anthropogenic 139 

stressors. Both native white-clawed crayfish (Austropotamobius pallipes) and other invasive 140 

invertebrate species were absent from the selected sites (with the exception of the long-141 

established gastropod Potamopyrgus antipodarum). P. antipodarum is widely distributed across 142 

most regions in England since its introduction over a century ago (Ponder, 1988) and is not 143 

considered to have any significant effects on freshwater invertebrate communities in most 144 

European streams (Murria, et al. 2008).  145 

 146 

All benthic invertebrate samples were collected using the Environment Agency’s standard 147 

sampling protocol for routine biomonitoring, comprising a 3-minute ‘kick-sample’, which 148 

encompasses all available habitats, and an additional 1-minute, detailed hand search using a 149 

standard FBA pattern pond net (Murray-Bligh, 1999). Each site has a season specific record of 150 

community composition; Spring (March –May, df 300), Summer (June-August, df 119), Autumn 151 

(September – November, df 352) and Winter, (December – February, df 75). Macroinvertebrates 152 

were recorded to either species or genus level. Diptera larvae were only resolved to family level 153 

and Hydracarina to order throughout the series. In total, 596 taxa were recorded. 154 

 155 

Six standard biomonitoring indices of ecological and hydrological quality were derived for each 156 

sample. Three of these indicators are routinely used to assess water quality by the Environment 157 

Agency: the Biological Monitoring Working Party Score (BMWP; Chesters, 1980), the Number of 158 

BMWP-scoring families present (NTAXA) and the Average Score Per-Taxon (a derivative of 159 

BMWP). The Lotic Invertebrate index for Flow Evaluation (LIFE; Extence et al., 1999) which 160 

quantifies river flow pressures (e.g. low flows during drought, abstraction or impoundment 161 

pressures), and the Proportion of Sediment-sensitive Invertebrates (PSI; Extence et al., 2013) , 162 

which provides a measure of community sensitivity to fine sediment were also calculated for each 163 

sample. For some samples PSI scores were unclassified reducing the sample number from 827 164 



5 
 

to 745. All five of the above indices are widely employed by the Environment Agency to provide a 165 

measure of ecosystem health within lotic ecosystems. The final index employed was the richness 166 

of aquatic insect larvae within the orders Ephemeroptera, Plecoptera and Trichoptera (EPT 167 

richness) and is widely used internationally (e.g. Ligeiro et al., 2013; Tonkin et al., 2015). All 168 

indices were standardized by site (Z-scores) to control for natural variability associated with 169 

individual rivers. 170 

2.2 .Data analysis 171 

Data were categorised into four groups: i) Control-before invasion, ii) Control-after invasion, iii) 172 

Invaded-before invasion, iv) Invaded-after invasion). For sites invaded by P.leniusculus the 173 

approximate date of invasion was determined based on the first occurrence in the historical faunal 174 

series. Detecting signal crayfish is difficult due to their high mobility (Gladman et al., 2010) and 175 

there are currently no methods of determining crayfish populations below a density of 0.2m-2 176 

(Peay, 2003). It is likely that the true detection limit is higher, probably approaching a density of 177 

1.0m-2 for the kick-net samples utilised in this study. As a result, it is important to acknowledge 178 

that signal crayfish may have been present at the study sites for a number of years prior to formal 179 

detection in biomonitoring samples. Also, routine sampling of crayfish populations is not a 180 

standard practice following invasion, and it is likely that variations in population densities between 181 

sites over time will be present in the dataset. 182 

Control sites were divided into two periods (before invasion and after invasion) based on the 183 

mean date of invasion for the respective region (1999 for East; 1997 for North West; and 2003 for 184 

South East). This provided a means of assessing whether there were temporal shifts in 185 

invertebrate community composition and bioindicators not associated with crayfish invasion. This 186 

factor was included in the analysis as previous long-term analyses of UK data sets have revealed 187 

changes in community composition associated with drought (Monk et al., 2008), channel 188 

morphology modifications (Dunbar et al., 2010) and improvements in water quality (Durance and 189 

Ormerod, 2009). 190 

 191 

To assess the potential influence of crayfish invasion on the biomonitoring indices, Generalised 192 

Linear Models (GLMs) were fitted to each metric. To enable a GLM to be fitted to the data, Z-193 

scores were normalised to positive values prior to analysis. This standardised the indices, making 194 

them comparable with each other, without modifying the variance or trends within the series. 195 

Models were fitted using the glm function in R Version 3.1.2 (R development Core Team, 2014). 196 

Inspection of the Akaike’s Information Criteria (AIC) indicated that a Gaussian error distribution 197 

and identity link was the most suitable structure. Only significant terms were included in the final 198 

model and were examined using the drop function. For each index, a GLM was fitted which 199 

encompassed all available data. To assess the effect of crayfish on indices, the significance of 200 

the interaction term (time x treatment) was examined. To determine any seasonal effects GLMs 201 



6 
 

were fitted to indices based on Spring and Autumn samples (df 300, and 352 respectively – 265 202 

and 321 for PSI). Temporal changes in index scores were visualised and inspected via error plots 203 

in IBM SPSS Statistics (version 21, IBM Corporation, New York). Index scores were visualised on 204 

a river, region and global basis to identify and confirm the consistency of the trends. 205 

 206 

3. Results 207 

ASPT scores (derived from BMWP) demonstrated no significant changes following crayfish 208 

invasion, with both ‘control’ and invaded rivers demonstrating an increase in scores over time   209 

(T3, 827 = -0.183, P > 0.05; Fig. 1a). BMWP, NTAXA and EPT richness displayed inconsistent 210 

responses following crayfish invasion when individual rivers and regions were considered; some 211 

rivers and regions displayed a decrease comparative to the ‘control’ rivers whilst others displayed 212 

increases (Figs. 1b, c & d). Both LIFE and PSI displayed a significant elevation of scores 213 

following crayfish invasion compared to control sites. For both indices, the overall temporal trend 214 

of increasing scores was present in both ‘control’ and invaded streams, however the increases in 215 

invaded streams following invasion were determined to be statistically inflated (T =3, 827 = 3.905, P 216 

< 0.001 and T =3, 745 = 3.905, P < 0.001 respectively; Figs. 1e & f). When season was considered, 217 

LIFE and PSI scores displayed significantly inflated scores within invaded rivers for the autumn 218 

season (T3, 350 = 2.906, P <0.005 and T = 3, 321 = 4.529, P<0.001 respectively; Figs. 2a and b). In 219 

contrast no significant differences in the temporal trends between invaded and ‘control’ sites were 220 

identified for any of the biomonitoring scores for the spring sampling period (P > 0.05). All 221 

statistical significance values and measures of standard error for the Before-After-Control-222 

Invaded interaction effect for each index and season (Spring and Autumn) are presented in Table 223 

1.  224 

 225 

4. Discussion 226 

Results from this study indicate that the presence of signal crayfish has not significantly changed 227 

the effectiveness of the commonly utilized water quality indices, ASPT, NTAXA or BMWP, 228 

employed for EU WFD ecological assessment (Furse et al., 2006). ASPT displayed no significant 229 

differences among control or invaded streams, with a similar magnitude of increase in the score 230 

over time. BMWP, NTAXA and the biometric of EPT richness all demonstrated no consistent 231 

pattern in either control or invaded streams, between regions or between rivers in the same 232 

region. All four of these scores are based on records of presence only and do not incorporate any 233 

weighting for the abundance of the taxa contributing to the score (recorded at family level). 234 

Furthermore, BMWP, NTAXA and EPT richness are additive measures which may be influenced 235 

by habitat richness and sampling effort, and are inherently more variable than their numerical 236 

average typically suggests (Clarke et al., 2003). It is likely that should these metrics include 237 

abundance weightings in their future derivations (as in the case of the proposed BMWP / NTAXA 238 

replacement – the Whalley, Hawkes, Paisley & Trigg metric; WHPT, WFD-UKTAG, 2014), then 239 
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alterations to scores following invasion may occur and the resulting scores would need to be 240 

interpreted with this in mind. Moreover, the taxonomic resolution used in scoring may play a key 241 

role in determining crayfish invasion effects, with greater taxonomic level (genus or species level 242 

data), making identification of invasion effects more likely. Reduced taxa richness (number of 243 

taxa) has been observed in other studies associated with crayfish invasion (Crawford et al., 2006; 244 

Ruokonen et al., 2014), although the family level data used to derive the metric NTAXA did not 245 

identify any assemblage changes in the current investigation.  246 

 247 

LIFE and PSI indices, which incorporate abundance weightings of the taxa contributing to their 248 

score, both displayed significantly inflated scores following crayfish invasion compared to control 249 

rivers. The application of the LIFE scores enables flow regime variability to be quantified based 250 

upon the flow requirements of invertebrate species (Extence et al., 1999). Aquatic invertebrate 251 

community composition following crayfish invasion has been reported to shift towards more 252 

mobile taxa adapted to faster flow velocities at the expense of slower, less mobile taxa (Parkyn et 253 

al., 1997).  Studies have reported increasing or unaltered abundances or dominance of highly 254 

mobile and flow velocity sensitive Ephemeroptera larvae at sites where invasive crayfish are 255 

present (Usio and Townsend, 2004; Grandjean et al., 2011). The inflated LIFE scores recorded 256 

within invaded streams most likely reflects the greater mobility of the remaining flow sensitive 257 

taxa, characteristics which are likely to enhance their ability to evade crayfish predation 258 

(Peckarsky, 1996). Predator avoidance strategies, including enhanced locomotion and vertical 259 

migration to the waterline or into the river bed (Crowl and Covich, 1990; Haddaway et al., 2014), 260 

by some taxa could potentially lead to the inflation or depression of biomonitoring scores. The 261 

application of biological indicators typically assumes that the impacts of predation and competition 262 

within macroinverterbrate assemblages are minor relative to the environmental changes that the 263 

index was designed (and employed) to detect. It is likely that native predatory species have little 264 

effect on the performance of biomonitoring tools because the community is familiar with them. 265 

However, the invasion of a non-native ‘alien species’ into a waterbody may disrupt this natural 266 

equilibrium leading to changes in the performance of biomonitoring tools. 267 

 268 

The PSI score was designed to identify the effect of fine sediment pressure (primarily deposition) 269 

based upon tolerance ranges of individual taxa (Extence et al., 2013). It appears that the inflated 270 

PSI and LIFE scores recorded in this study were influenced by the markedly reduced abundance 271 

of Gastropoda, Bivalvia and Hirudinea taxa. These are among the most widely documented prey 272 

items of crayfish and may be selectively or preferentially predated by crayfish in many lotic 273 

ecosystems (Dorn, 2013). Although the prevalence of some prey taxa are likely to decrease in the 274 

presence of invasive crayfish, there is limited evidence to suggest that they become locally 275 

extinct. Consequently, the inflated PSI and LIFE scores may represent a shift to a community 276 

dominated, by fine sediment and flow sensitive taxa through predation rather than a shift in flow 277 
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regime or fine sediment present at a site. Future application and potential modifications to these 278 

indices should consider the potential effect of invasive species upon them. The use of these 279 

indices in their current form could be used to help identify sites subject to invasive taxa but may 280 

also lead to the misinterpretation of the stressors affecting water bodies if not identified. Given the 281 

variety of invertebrate biomonitoring tools available we recommend that, where feasible, a multi-282 

metric approach is employed in the ecological assessment of freshwater bodies. The application 283 

of individual metrics may not indicate pressures associated with the stressor it was designed to 284 

quantify, but when used in combination with other metrics derived in different ways (e.g. presence 285 

/ absence data, total abundance or abundance weighted), may provide evidence to indicate the 286 

presence of an ecological stressor(s). Together with knowledge regarding the wider 287 

environmental and ecological context, this approach may help inform water resource and river 288 

managers of potential threats to the ecological status of freshwater bodies associated with the 289 

spread of invasive species.  290 

 291 

When individual seasons were considered, no significant differences were recorded between 292 

control and invaded sites / rivers for the spring sampling period. Crayfish movement and growth is 293 

strongly regulated by water temperatures, with activity increasing with rising temperatures 294 

(Johnson et al., 2014). Spring samples typically occur when crayfish activity is at its minimum and 295 

consequently it is unsurprising that none of the indices were significantly affected at this time of 296 

year. In contrast, Autumn samples are usually collected at the height or toward the end of crayfish 297 

activity (notably directly after the breeding season); with inflated elevation of both the LIFE and 298 

PSI scores evident at invaded sites. It is therefore recommended, that routine biomonitoring 299 

samples collected in autumn need to be interpreted with caution if invasive crayfish are present or 300 

if their presence is suspected. Samples collected in spring were not determined to be significantly 301 

affected but should still be considered with caution. We also advise that those applying 302 

macroinvertebrate biomonitoring indices to identify environmental stressors or those developing 303 

new indices should be conscious of the potential influence that invasive species may have on the 304 

effectiveness of such tools, especially if abundance weightings are incorporated in their 305 

derivation.  306 

 307 
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Fig. 1. Macroinvertebrate biomonitoring indices (mean ± 95% CI) recorded for each before, after, 418 
invaded and control factor in East, South East and North West England; a) ASPT; b) BMWP; c) 419 
NTAXA ; d) EPT richness; e) PSI and; f) LIFE; Black solid = Before Invaded; Grey solid = After 420 
Invaded; Black dashed = Before Control and; Grey dashed = After Control. Metrics standardised 421 
to Z-scores.  422 
 423 
Fig. 2. Macroinvertebrate biomonitoring indices (mean ± 95% CI) recorded for each before, after, 424 
invaded and control factor for spring and Autumn samples from all three regions; a) LIFE and; b) 425 
PSI. Black solid = Before Invaded; Grey solid = After Invaded; Black dashed = Before Control 426 
and; Grey dashed = After Control. Metrics standardised to Z-scores. 427 
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Table 1. Summary values for the Before-After-Invaded -Control 
interaction effects from the GLM for each bio-monitoring index 

  SE T-Value P-Value Degree of sig 
All seasons 

    BMWP 0.141 -3.374 <0.001 *** 
ASPT 0.135 -0.183 0.855 

 NTAXA 0.148 -4.188 <0.001 *** 
EPT richness 0.139 -3.121 0.002 ** 
LIFE 0.134 3.905 <0.001 *** 
PSI 0.150 5.239 <0.001 *** 

Spring 
    BMWP 0.253 -0.786 0.433 

 ASPT 0.244 -0.008 0.994 
 NTAXA 0.248 -0.692 0.489 
 EPT richness 0.266 -1.513 0.131 
 LIFE 0.233 1.576 0.116 
 PSI 0.265 1.626 0.105 
 Autumn 

    BMWP 0.217 -2.605 0.010 * 
ASPT 0.200 0.569 0.570 

 NTAXA 0.224 -3.280 0.001 ** 
EPT richness 0.219 -2.429 0.015 * 
LIFE 0.212 2.906 0.004 ** 
PSI 0.232 4.529 <0.001 *** 
 N.B *** = P ≤ 0.001 , ** = P ≤ 0.005, * = P ≤ 0.05 

a) b) 


