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The long-term effects of invasive signal crayfish (Pacifastacus leniusculus) on 

instream macroinvertebrate communities 

Mathers, K.L., Chadd, R.P, Dunbar, M.J, Extence, C.A, Reeds, J., Rice, S.P. and 

Wood, P.J. 

Abstract 

Non-native species represent a significant threat to indigenous biodiversity and 

ecosystem functioning worldwide. It is widely acknowledged that invasive crayfish 

species may be instrumental in modifying benthic invertebrate community structure, 

but there is limited knowledge regarding the temporal and spatial extent of these 

effects within lotic ecosystems. This study investigates the long term changes to 

benthic macroinvertebrate community composition following the invasion of signal 

crayfish, Pacifastacus leniusculus, into English rivers. Data from long-term 

monitoring sites on 7 rivers invaded by crayfish and 7 rivers where signal crayfish 

were absent throughout the record (control sites) were used to examine how 

invertebrate community composition and populations of individual taxa changed as a 

result of invasion. Following the detection of non-native crayfish, significant shifts in 

invertebrate community composition were observed at invaded sites compared to 

control sites. This pattern was strongest during autumn months but was also evident 

during spring surveys. The observed shifts in community composition following 

invasion were associated with reductions in the occurrence of ubiquitous Hirudinea 

species (Glossiphonia complanata and Erpobdella octoculata), Gastropoda (Radix 

spp.), Ephemeroptera (Caenis spp.), and Trichoptera (Hydropsyche spp.); although 

variations in specific taxa affected were evident between regions and seasons. 

Changes in community structure were persistent over time with no evidence of 

recovery, suggesting that crayfish invasions represent significant perturbations 

leading to permanent changes in benthic communities. The results provide 

fundamental knowledge regarding non-native crayfish invasions of lotic ecosystems 

required for the development of future management strategies.    

Keywords: non-native taxa, benthic invertebrates, community effects, seasonal 

sampling, persistent, spatial. 
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1. Introduction  

The spread of non-native taxa represents a significant threat to freshwater 

biodiversity and ecosystem functioning at a global scale (Sala et al., 2000; Lodge et 

al., 2000; Simberloff et al., 2013). The establishment of populations of invasive 

species within an ecosystem can severely disrupt the structure and functioning of 

native floral and faunal communities through direct predation, competition and 

displacement of native species, but also via indirect pathways and the decoupling of 

trophic dynamics (Nyström et al., 1996; Strayer, 2010; Gutierrez et al, 2014). 

Consequently, the influence of invasive taxa are often far reaching, with impacts 

ranging from the replacement of individual species to the modification of ecosystem 

processes (Riccardi, 2007; Jackson et al., 2014). 

Crayfish represent some of the most successful and widely distributed invasive 

aquatic species worldwide, following either intentional introduction or accidental 

translocation (e.g. Hudina et al., 2012; Holdich et al., 2014; Kouba et al, 2014). They 

are one of the largest freshwater invertebrates, frequently dominating benthic faunal 

biomass where they occur (Lodge and Hill, 1994; Momot, 1995; Sousa et al., 2013). 

Even though many non-native crayfish replace an indigenous species, and thus 

frequently occupy similar ecological niches, invader effects may still be extensive if 

individuals reach a larger size and / or occur at greater population densities (Strayer, 

2010; Gheradi et al. 2011), especially if this is associated with reduced predation 

pressure or if invaders are able to exploit a wider range of resources.  

Crayfish display opportunistic polytrophic feeding habits, consuming algae, 

macrophytes, detritus, zoobenthos, fish and other crayfish (Momot et al., 1978; 

Lagrue et al., 2014; Ercoli et al., 2015a). Invasive crayfish may also act as 

ecosystem engineers through the alteration of detrital processing rates (Creed and 

Reed, 2004; Bobeldyk and Lamberti, 2008; Carvalho et al., 2016) and by changing 

the dominant algal cover on substrates (Creed, 1994; Matsuzaki et al., 2009). 

Studies documenting the effect of invasive crayfish in stream ecosystems have 

identified significant reductions in the biomass and richness of aquatic macrophytes 

(Lodge et al. 1994; Nyström et al., 2001), and aquatic invertebrates (Nyström et al., 

1999; Stenroth and Nyström, 2003; Crawford et al., 2006; Nilsson et al., 2012; Ercoli 

et al., 2015b). 
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Following invasion by crayfish, aquatic invertebrate community composition has 

been reported to shift towards more mobile taxa adapted to high flow velocities (e.g. 

Ephemeroptera species) at the expense of less mobile taxa such as Mollusca, 

Hirudinea and case-bearing Trichoptera species (Keller and Ruman, 1998; Parkyn et 

al., 1997; Dorn, 2013). The mobility of taxa, in addition to prey handling time, has 

been cited as key characteristics influencing the vulnerability of individual species 

associated with preferential predation (Ilheu and Bernado, 1993; Nyström and Perez, 

1998; Nyström, 1999). However, many taxa display behavioural and life history 

changes in response to predator pressure through avoidance behaviours such as 

vertical migration or enhanced locomotion (Crowl and Covich, 1990; Alexander and 

Covich, 1991; Haddaway et al., 2015).  

Indirect effects may also be evident within the ecosystem with a removal of 

macrophyte and algae cover affecting invertebrate populations through the loss of 

trophic resources and habitat availability (Lodge et al., 1994; Nyström et al., 1996). 

Similarly, a reduction of sedentary periphyton grazers (such as gastropods) and 

stimulated productivity through the excretion of nutrients may potentially benefit 

mobile grazers through the liberation of resources (Flint and Goldman, 1975; 

Charlebois and Lamberti, 1996). There have been suggestions that the composition 

of diet and feeding behaviour of crayfish varies with season (Goddard, 1988; Guan 

and Wiles, 1998), although evidence remains limited. Crayfish activity is seasonally 

variable being strongly regulated by water temperature (Gheradi et al., 1998; Bubb et 

al., 2004) as is the availability of macroinvertebrate prey (Allan, 1981).   

As invasive crayfish extend their range, understanding their effects on biodiversity 

and ecosystem services is increasingly important for informing management 

strategies (Lodge et al., 2012; Jackson et al., 2014; Moorhouse et al., 2014). Despite 

the widely acknowledged threat that invasive crayfish pose, much of the research to 

date has been focused on lentic ecosystems, whilst the impact on stream 

communities has been poorly quantified in many regions (Stenroth and Nyström, 

2003; Pysek et al., 2008; Lodge et al., 2012). The majority of studies have 

investigated the short-term effects of invasive crayfish at site or reach scales via 

small-scale in-situ enclosure experiments or through the use of ex-situ laboratory 

mesocosms typically over one season (e.g., Parkyn et al., 1997; Stenroth and 

Nyström, 2003; Magoulick, 2014; see Twardochleb et al, 2013 for a meta-summary 
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of all published invasive crayfish studies). Other studies have employed in-situ 

sampling over a limited duration (1 -12 months) where invading crayfish populations 

are already well established (e.g., Crawford et al., 2006). Short term experiments 

provide mechanistic insights into crayfish – community or individual population 

interactions. However, it is also necessary to investigate the long-term and large 

scale effects of invasive crayfish in order to determine whether they are persistent 

and if the effects vary spatially, temporally or seasonally. Long- term studies also 

provide the opportunity to quantify the extent of invasion effects that cannot be 

captured though experimental mesocosm studies (Wilson et al., 2004; McCarthy et 

al., 2006).  

 

This study examines the long-term effects of the invasive signal crayfish, 

Pacifastacus leniusculus (Dana) on macroinvertebrate community composition and 

individual taxa within lowland rivers in England (UK) during spring and autumn 

seasons. Signal crayfish (P.leniusculus) are endemic to North America and have 

been introduced to over 20 countries in Europe. They are considered to be one of 

the most prevalent non-native crayfish species in Europe, with widespread and 

abundant populations now established across the UK (Kouba et al., 2014; Holdich et 

al., 2014). Unlike previous studies, the effect of invasive crayfish is investigated 

using multiple regions and catchments before and after invasion, and in direct 

comparison with control sites where long-term monitoring has not recorded the 

presence of P. leniusculus. Specifically we addressed the following questions:  

1) Does the invasion of P. leniusculus lead to significant changes in benthic 

macroinvertebrate community composition in lotic ecosystems? 

2) Is the effect of P. leniusculus invasion on macroinvertebrate community 

composition spatially extensive (is the effect evident over different bio-

geographical ranges of lowland England) and do the effects persist over time 

(multiple years)? 

3) Are the implications of P. leniusculus invasion seasonally dependent or are 

the effects on the macroinvertebrate community composition persistent and 

evident all year round? 

4)  Are the same lotic taxa identified in previous studies of invasion by P. 

leniusculus (e.g. sensu Guan and Wiles, 1998; Usio and Townsend, 2004; 
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Crawford et al., 2006) responsible for the changes observed in rivers in the 

current investigation? 

2. Materials and methods 

2.1 Datasets characterised  

Following preliminary consultation with staff from a statutory environmental 

monitoring authority, the Environment Agency of England, macroinvertebrate 

community data from three English regions were extracted from the Environment 

Agency ‘BIOSYS’ database. The database covers sites across England and contains 

long term biomonitoring (benthic macroinvertebrate) records for over 27 000 sites. 

To allow comparison between sites invaded by P. leniusculus and control sites, 

those selected for the study shared similar characteristics with the exception of 

invasion by crayfish. This aimed to minimise the influence of any potential 

confounding factors on the analysis. All sites selected had to fulfil the following 

criteria: i) records extended over multiple years with a minimum of 5-years 

macroinvertebrate community data prior to invasion by P. leniusculus or in the case 

of control sites 5-years before the average date rivers in the region were invaded  

(the dataset was subsequently divided into spring and autumn survey periods); ii) 

sites did not support a native crayfish population during any of the time series; iii) 

sites were not subject to other recent invasions and; iv) sites were not subject to 

other significant anthropogenic stressors such as water abstraction, flow regulation 

or impaired water quality. Criterion iii) was relaxed for the non-native gastropod 

Potamopyrgus antipodarum (Gastropoda: Hydrobiidae) because this species is 

widely distributed across most regions of the UK since its introduction over a century 

ago (Ponder, 1988) but is not thought to have a significant influence on freshwater 

invertebrate communities in most European streams (Murria et al., 2008). 

Data from three regions formed the basis for the analysis, encompassing natural 

variability in community composition across England (East, South East and North 

West England; Figure 1).  The regions were selected to reflect natural 

biogeographical, geological and hydrological variability across England, thus 

incorporating the diverse regional variability of lowland river systems. Following 

screening of the data, a total of 7 ‘invaded’ and 7 ‘control’ lowland rivers were 

identified (Table 1). Rivers were selected to have broadly comparable physical 

characteristics within the individual regions (channel size, discharge, water chemistry, 
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altitude and geology). Rivers in South-East England are predominately characterised 

by chalk deposits, those in East England by mudstones and those in the North West 

by sedimentary sandstone and igneous rocks. The characteristics of the rivers 

employed by region are shown in Table 2.  Rivers utilised in the study were not 

heavily managed or regulated and consequently physical and hydrological  

characteristics did not change during the study period. In addition, electrofishing 

surveys conducted by the Environment Agency of England indicate no major 

changes in fish populations over time in all rivers employed. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Rivers included in the long-term analysis. Control sites were assigned a nominal 
date to allow comparison with invaded sites (denoted in bold italics) based on the average 
date of invasion for the respective region (Note - control sites were free from crayfish 
during the entire study period). 

River  English 
Region  

Duration of 
record 

Control / 
Invaded? Invasion point 

Gwash East  1989-2013 Invaded 1996 
Nene East 1991-2013 Invaded 1998 
Chater East 1990-2013 Control  1997 
Eyebrook East 1990-2013 Control  1997 
Harrop Brook North West 1990-2013 Invaded 1996 
Torkington Brook North West 1990-2004 Invaded 1998 
Glossop Brook North West 1990-2013 Invaded 1997 
Bollin North West 1990-2013 Control  1997 
Sett North West 1986-2013 Control  1997 
Ver South East 1990-2013 Invaded 2002 
Rib South East 1975-2013 Invaded 2006 
Gade  South East 1983-2013 Control  2003 
Mimram  South East 1975-2013 Control  2003 
Ash South East 1977- 2013 Control  2003 
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All benthic invertebrate samples were collected using the Environment Agency’s 

standard sampling protocol comprising a 3-minute ‘kick-sample’, which 

encompasses all available habitats, and an additional 1-minute, detailed hand 

search (Murray-Bligh, 1999). This sampling strategy has provided an effective 

means of detecting temporal changes in invertebrate communities of English and 

Welsh rivers previously (Monk et al., 2008; Durance and Ormerod, 2009). Data were 

analysed on a seasonal basis (Spring, March-May and Autumn, September – 

November) to enable the determination of consistent trends. The data-set comprised 

530 samples in total (255 and 275 from invaded and control samples respectively) 

with the majority of samples collected between 1990 and 2013 (three sites had data 

series extending back to the 1970’s and an additional three further sites had data 

from the mid 1980’s) and a total of 596 taxa were recorded.  

Table 2. Summary of selected abiotic characteristics (mean values) of rivers employed in 
analysis by region. The rivers examined in the study were not heavily managed or regulated 
and consequently physical and hydrological characteristics did not change significantly during 
the study period. 

  

North 
West 

invaded  

North 
West 

control  

South 
East 

invaded  

South 
East 

control  
East 

invaded  
East 

control  

Altitude (m a.o.d) 138 199 59 73 86 63 

Depth (m) 0.13 0.11 0.25 0.16 0.22 0.1 

Width (m) 3.67 3 7.5 4.67 3.33 4.5 

Discharge (m
3
 / sec) 0.62 0.31 0.46 0.31 0.36 0.46 

Alkalinity mg L
-1

 79 47 265 262 212 201 
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Figure 1. Site locations of the long term macroinvertebrate biomonitoring records employed from the 

South East, North West and East regions of England. 

Given the length of macroinvertebrate community records many of the faunal lists 

comprised mixed taxonomic levels of identification. As a result the lowest possible 

taxonomic level available across the three regions was used. In the majority of 

instances this meant genus level data were utilised, although species level data were 

available for a number of taxa. Diptera larvae were resolved to family level and 

Hydracarina to order level throughout the series. Due to variations in the way in 

which abundance data were recorded over time, reflecting a shift from abundance 
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classes on a 33rd percentile logarithmic scale to abundances on standard logarithmic 

scales (and real counts for single digit abundances), abundance data were 

standardised into ordinal classes (Durance and Ormerod, 2009) to enable 

comparison over the whole series (1 = ≤ 9, 2 = 10 – 32, 3 = 33 – 99, 4 = 100 – 332, 5 

= 333 – 999, 6 = ≥1000). 

2.2 Data analysis  

Changes to macroinvertebrate community composition were examined via non-

metric multidimensional scaling (NMDS) using Bray-Curtis similarity coefficients. 

Data were categorised into four groups: i) control - before invasion, ii) control - after 

invasion, iii) invaded - before invasion and; iv) invaded - after invasion. For invaded 

sites the approximate date of invasion was determined by the first occurrence of P. 

leniusculus in the historical faunal series. No density data was available for the sites 

because routine sampling of crayfish populations is not a standard Environment 

Agency biomonitoring practice following invasion. Detecting signal crayfish is difficult 

due to their high mobility (Gladman et al., 2010) and there are currently no methods 

of determining crayfish populations below a density of 0.2m-2 (Peay, 2003). For the 

kick-net samples utilised in this study, it is likely that the detection limit is higher, 

probably approaching a density of 1.0m-2. Consequently for all sites employed in this 

study, crayfish densities would be significant, although some variation by sites and 

through time is likely. In addition, it is important to acknowledge that signal crayfish 

may have been present at the study sites for a several years prior to formal detection.  

Control sites were divided into two periods (before invasion and after invasion) 

based on the mean date of invasion for the invaded rivers in the respective region 

(1997 for East; 1997 for North West; and 2003 for South East). The assignment of a 

nominal date allowed a direct comparison between the control and invaded sites 

over the same time-period and also provided a means of assessing whether there 

were temporal shifts in invertebrate community composition not associated with 

crayfish invasion. This approach was taken as previous long-term analyses of UK 

data sets have revealed changes in community composition associated with drought 

(Monk et al., 2008), modification of channel morphology (Dunbar et al., 2010) and 

improvements in water quality (Durance and Ormerod, 2009).  
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A One way ANOSIM (Analysis of Similarities) was used to examine differences in the 

communities amongst the control and invaded rivers before and after ‘invasion’. Both 

P and R ANOSIM values were examined, with R values >0.75 indicating strong 

separation amongst groups, R = 0.75–0.25 indicating separate groups with 

overlapping values and R <0.25 as barely distinguishable groups (Clarke and Gorley, 

2006). Taxa contributing to the differentiation of communities within individual 

regions and for river group (control and invaded) were identified through the 

application of the similarity percentage (SIMPER) with a selection of these examined 

in further analysis according to criteria described below. Preliminary NMDS analysis 

indicated strong differences among regions for macroinvertebrate community 

composition and as a result subsequent analyses were conducted on a regional 

basis. ANOSIM indicated significant differences for all pairwise comparisons of 

regions in both seasons; all P values  <0.001 and R values > 0.75. To assess 

temporal changes in community composition and determine if macroinvertebrate 

communities demonstrated recovery following invasion, temporal trajectories of 

changes in assemblage composition were plotted for each river and season.  All 

regional NMDS analyses were performed in PRIMER Version 6.1.16 (PRIMER-E Ltd, 

Plymouth, UK).  

 

To assess changes in individual taxa associated with crayfish invasion, taxon 

occurrence (presence or absence) amongst the control and invaded rivers both 

before and after invasion were examined. Nine taxa (3 Mollusca, 2 Ephemeroptera, 

2 Hirudinea, 1 Trichoptera and 1 Crustacean) were selected for further analysis on 

the basis of the following criteria: i) identified as driving community differentiation in a 

number of regions through application of SIMPER in analyses outlined above and / 

or ii) widely cited in previous studies of invasive crayfish effects in lotic systems (e.g. 

Keller and Ruman, 1998; Haddaway et al., 2014; Moorhouse et al., 2014) and; iii) 

abundant in all regions and sites during the study period. 

 

Generalised linear mixed models (GLMMs) were fitted to each taxon for each season 

(Spring and Autumn) using a binomial error distribution. Models were fitted to 

presence / absence  data using the glmmADMB version 0.8.1 package (Fournier et 

al. 2012, Skaug et al., 2014 ) in R version 3.1.2 (R development Core Team, 2014). 

The final model was built using region, treatment (control or invaded) and time period 
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(before or after invasion) as terms. Monitoring site was specified as a random effect 

to reflect that taxon occurrence through time at individual sites will be correlated. To 

assess the effect of crayfish on the occurrence of specific taxa, the significance of 

the interaction term (time period x treatment) was examined. This enabled 

determination of whether taxa changes over time occurred in both invaded and 

control rivers or if the effect was confined to those where P. leniusculus occurred. 

Results were visualised by predicting probabilities of occurrence for each Before - 

After - Control - Invaded combination calculated from the GLMM on the linear 

predictor scale and transformed to the response scale using the inverse-logit 

function to enable the direction and trends of change to be ascertained. Standard 

errors for predictions were calculated on the linear predictor scale by multiplying the 

model matrix for each Before –After- Control - Invaded combination by the variance-

covariance matrix for the fixed-effect parameter estimates. These were converted to 

confidence intervals (+/- 2 SE) on the same scale and similarly back-transformed. 

Visual predictions of the Before – After – Control – Invaded relationship are based 

upon an ‘average’ site as a function of the global GLMM. 

 

3. Results 

3.1 Community composition 

Non-metric Multi-Dimensional Scaling (NMDS) ordination diagrams for all three 

regions (South East, North West and East England) indicated distinct clusters of 

macroinvertebrate communities following crayfish invasion for both Spring and 

Autumn seasons (Figure 2). In most instances, each of the regional diagrams 

indicated similar community composition between control and invaded sites prior to 

crayfish colonisation. Following colonisation, the invaded and control sites formed 

distinct groups, indicating a change in community composition at both control and 

invaded sites compared to the period preceding crayfish invasion.   

The degree of separation between the groups using Analysis of Similarity (ANOSIM) 

indicated highly significant differences for all pairwise comparisons of groups for 

South East England (all P < 0.02), North West (all P < 0.002) and East England (all 

P < 0.001). R values indicate that before colonisation, control and invaded groups 

were barely distinguishable in the South East (Rs = 0.116 and Ra = 0.16 for both 

spring and autumn respectively) and in the East during spring months (Rs = 0.130). 
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During autumn months for East England (Ra = 0.280) and for both seasons in North 

West England (Rs =0.636 and Ra = 0.344) the degree of similarity between invaded 

and control sites before invasion was less strong but was still evident. Following 

colonisation by crayfish, invaded and control groups demonstrated a higher degree 

of separation in all three regions and were strongly separated in the North West (Rs 

= 0.886 and Ra = 0.861) and were separated but overlapping within the South East 

(Rs = 0.512 and Ra = 0.421) and East (Rs = 0.457 and Ra = 0.609).  

 

Figure 2. NMDS seasonal ordinations of benthic macroinvertebrate community data using the Bray-

Curtis similarity coefficients for spring and autumn for: a) & b) South East; c) & d) North West and; e) 

& f) East England  

East - Spring 

East - Autumn 

North West - Spring 

South East- Spring 

North West – Autumn 

South East - Autumn 

2D Stress: 0.12 

2D Stress: 0.16 2D Stress: 0.16 

2D Stress: 0.24 

2D Stress: 0.12 a) b) 

c) d) 

e) f) 2D Stress: 0.23 

North West - Spring North West - Autumn 
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Temporal trajectories of macroinvertebrate community change were observed for 

both invaded and control rivers (Figures 3 and S1). Within invaded rivers, the 

community demonstrated clear changes in structure directly after invasion. 

Community changes were also evident in control rivers over the time period but 

these were different to those recorded for invaded sites and very little overlap was 

evident after the invasion point (IP on Figure 3). Prior to invasion, control and 

invaded river trajectories demonstrated considerable overlap with pathways 

intersecting on a number of occasions. Following the invasion point, trajectories of 

change for both control and invaded rivers remained discrete, with no similarities 

apparent or marked changes in trajectory paths (to indicate recovery) evident for 

invaded sites.  

 

The taxa primarily responsible for community composition changes within invaded 

rivers (before vs after), as identified by the similarity percentage (SIMPER), differed 

regionally as a function of natural biogeographic differences in community 

composition, although several taxa were common to two or more regions: 3 regions - 

Gammarus pulex, Hydropsyche spp., Potamopyrgus antipodarum, Baetis spp. and 

Hydracarina and; 2 regions – Sphaeriidae, Simuliidae and Elmidae (Table 3). Where 

several species were identified by SIMPER from the same genus within or between 

regions, these were combined to enable analysis of the most ubiquitous taxa across 

regions through application of the GLMM (e.g. Hydropsyche spp., Baetis spp., 

Caenis spp. and Radix spp. contained several species identified by SIMPER). 

Regions also displayed some seasonal differences in the taxa identified as driving 

changes, with some taxa identified to be driving community dissimilarity in one 

season but not the other (e.g. Planorbidae, Asellus aquaticus, Heptageniidae). Taxa 

identified to be driving changes in control river communities over time are presented 

as supplementary material (Table S1). 
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Figure 3. NMDS temporal ordinations of benthic macroinvertebrate community data. Individual rivers 

are linked by temporal trajectories of change during the sampling period. Plots represent pairwise 

comparisons of invaded river(s) and control river(s) by region and season for: a) & b) South East 

rivers Ver and Gade; c) & d) North West rivers Glossop and Sett and; e) & f) East England rivers 

Gwash and Eyebrook. Other rivers are presented in supplementary material (Figure S1). The invasion 

date for both invaded and control rivers are denoted using the abbreviation IP (Invasion Point). 

Control rivers are symbolised by a solid grey line and invaded rivers by a black dashed line.  

a) b) 

c) d) 

e) f) e) f) 

South East - Spring South East - Autumn 

North West - Autumn North West - Spring 

East- Spring East- Autumn 

c) 

North West - Spring 
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3.2 Taxon-specific responses 

Results presented below are for the GLMM model based on presence / absence of 

nine select taxa by individual season based on a global model (all regions). Results 

indicate if changes in taxa occurrence over time were common across all sites (both 

control and invaded) or if they were confined to invaded sites and therefore could be 

attributed to crayfish invasion. 

3.2.1 Spring 

The prevalence of the leech Glossiphonia complanata (P = 0. 024) declined 

significantly following crayfish invasion whilst the occurrence of Erpobdella 

octoculata did not differ significantly compared to control sites (P = 0.161), although 

a reduction in its occurrence was evident (Figure 4). The occurrence of the bivalve 

family Sphaeriidae declined following invasion but this was not statistically significant 

when compared to control sites (P = 0.228). The prosobranch gastropod mollusc P. 

antipodarum (P = 0.320) demonstrated no significant changes in occurrence 

associated with crayfish invasion whilst the pulmonate gastropod Radix spp. 

declined significantly (P = 0.003; Figure 4). Mayflies from the genus Caenis 

displayed reduced prevalence following invasion but this was not significant relative 

to control sites (P = 0.165). The mayfly Baetis spp. and amphipod G. pulex displayed 

no change in prevalence (P = 0.120 and P= 0.060 respectively) following crayfish 

invasion with their occurrence remaining high (Figure 4). The occurrence of the 

Table 3. Summary of the top 10 invertebrate taxa (ranked percentage dissimilarity) as identified by SIMPER 

analysis as most strongly influencing site dissimilarity of community composition before and after crayfish 
invasion (invaded rivers) for the different regions and seasons. Total change in abundance following invasion 
indicated in parentheses (+/-), and season (Spring = S, Autumn = A). Where no letter is provided taxa identified 
for both seasons. Note for South East and North West.  

East South East  North West 

Hydropsyche spp. (-) Hydropsyche spp. (-) Hydropsyche spp.  (+) 

Glossiphonia complanata (-) Baetis spp. (+) Baetis spp. (+) 

Sphaeriidae (-) Sphaeriidae (-) Gammarus pulex (+) 

Gammarus pulex (+) Gammarus pulex (+) Chironomidae (+) 

Caenis spp. (-) Valvata piscinalis (-) Elmidae (+ A) 

Radix spp. (-) Potamopyrgus antipodarum (+) Ecdyonurus spp. (-) 

Baetis spp. (+) Elmidae (-) Hydracarina (-) 

Potamopyrgus antipodarum (- S, +A) Leptoceridae (-) Simuliidae (-) 

Ancylus fluviatilis (-) Hydracarina (-) Potamopyrgus antipodarum (-A) 

Hydracarina (-) Simuliidae (- A) Asellus aquaticus (- A) 

 

Planorbidae (- S) Heptageniiidae (+S) 

 

 
Empididae (+S) 
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caddisfly nymph, Hydropsyche spp., reduced significantly (P = 0.010) following 

crayfish invasion compared to control sites (Figure 4).  

Figure 4. Predictions of average probability of occurrence for individual taxa with confidence intervals 

for each combination of before, after, control and invaded factor based on spring months (March - 

May). Predictions made for nine selected taxa using the Generalised Linear Mixed Model approach 

described in the text. Predictions of occurrence for each taxon are made using the global GLMM 

dataset (all regions) with predictions representing an average of all sites.  

3.2.2 Autumn The occurrence of the leech species G. complanata, E. octoculata, 

and the gastropod Radix spp. (all P < 0.001) declined significantly following crayfish 

invasion relative to control sites (Figure 5). Both Sphaeriidae and P. antipodarum 

demonstrated no change in occurrence following crayfish invasion (P = 0. 840 and P 

= 0.225 respectively; Figure 5). Insect larvae within the order Ephemeroptera 

displayed contrasting responses following crayfish invasion. The prevalence of 
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Baetis spp. did not differ significantly over time at either control or invaded sites (P = 

0.700) whilst Caenis spp. were significantly less common following crayfish invasion 

(P= < 0.001; Figure 5). The amphipod G. pulex (P = 0.281) demonstrated no 

significant changes following invasion, whilst the Trichoptera Hydropsyche spp. 

declined at invaded sites (P = 0.028; Figure 5). All statistical significance levels and 

standard error values for the Before-After-Control-Invaded interaction effect for each 

taxon are shown in Table 4.  

 

Figure 5.  Predictions of average probability of occurrence for individual taxa with confidence intervals 

for each combination of before, after, control and invaded factor based on autumn months 

(September – November). Predictions made for nine selected taxa using the Generalised Linear 

Mixed Model approach described in the text. Predictions of occurrence for each taxon are made using 

the global GLMM dataset (all regions) with predictions representing an average of all sites. 
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Table 4. Summary values for the Before-After-Invaded-Control interaction effects from the GLMM 
predictions for each taxon for spring and autumn. Significant terms are denoted in bold.  

Taxon 

Spring  Autumn  

Standard 
Error 

Z-Value P Value 
Standard 

Error 
Z-Value P Value 

Hirudinea 
   

   Glossiphonia complanata 0.978 -2.26 0.024 0.784 -3.57 <0.001 

Erpobdella octoculata 0.791 -1.40 0.161 0.657 -3.42 <0.001 

Mollusca 
      Potamopyrgus antipodarum 0.765 -0.99 0.320 0.730 -1.21 0.225 

Sphaeriidae 0.685 -1.21 0.228 0.692 0.20 0.840 

Radix spp. 1.109 -2.91 0.003 1.151 -4.65 <0.001 

Ephemeroptera 

      Caenis spp. 0.744 -1.39 0.165 0.774 -3.61 <0.001 

Baetis spp. 1.518 0.12 0.908 0.903 -0.38 0.700 

Trichoptera 
      Hydropsyche spp. 0.838 -2.55 0.01 0.703 -2.20 0.028 

Crustacean 
   

   Gammarus pulex 1.557 -1.88 0.06 1.004 -1.08 0.281 

 

4. Discussion 

4.1 Invertebrate community responses to P. leniusculus invasion 

The results from this study provide strong evidence that invasive signal crayfish 

affect invertebrate community composition in lowland rivers. All three regions 

examined experienced marked changes in benthic community composition following 

invasion when compared to both pre-invasion conditions and control sites. The effect 

on macroinvertebrate communities in all three regions was seasonally consistent, 

being strongest during autumn months, but were also evident in spring months. 

Crayfish movement and growth is strongly driven by water temperature, with activity 

typically peaking during summer months (Sousa et al., 2013; Johnson et al., 2014). 

Consequently, stronger effects on macroinvertebrate communities during the autumn 

months were expected, as these samples typically occur at the height or toward the 

end of crayfish activity (notably directly after the breeding season). Slight differences 

in the taxa driving the community changes between seasons were also evident, 

suggesting that seasonal heterogeneity of prey availability, and thus preferential 

predation, is a key process determining the effects of invaders on macroinverterbrate 

communities (Xu et al., 2012). 

 

In each of the regions examined, the community composition of control and invaded 

sites diverged when compared with samples from the pre-invasion period. In addition, 

control sites also displayed a shift in community composition temporally, but these 
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changes were different to those recorded in the invaded rivers, suggesting the 

presence of a widespread stressor across all sites. During the study period, England 

experienced highly variable hydro-climatological conditions with a series of high 

magnitude droughts and prolonged periods of low flows in 1989-1992, 1995-1997 

and 2004-2006, with the latter years focussed in the South East of England (Marsh 

et al., 2007; Hannaford and Buys, 2012). With the exception of one site, the River 

Ver in South East region, the invasion by P. leniusculus occurred during or directly 

after one of these high magnitude low flow periods known to have resulted in 

community changes across England (Wright et al., 2004; Monk et al., 2008; Laize et 

al., 2014; Worrall et al., 2014). These periods resulted in changes to community 

composition at all of the sites examined and provides evidence to explain the long-

term changes observed at control sites in addition to those at sites invaded by P. 

leniusculus. However, it is important to note that the invasion of sites in this study is 

likely to predate the point in which they were recorded in biomonitoring samples in 

some instances. As a result, the drought conditions may have facilitated the 

expansion of non-native crayfish populations. The interaction between flow regime / 

hydrological variability and invasive taxa requires further detailed examination. 

Evidence suggests that crayfish populations are not severely affected during high 

magnitude drought events (Jones and Bergey, 2007; Distefano et al., 2009; Dyer et 

al., 2015) and consequently invasive crayfish may have strong effects on stream 

ecosystems irrespective of the occurrence of hydrological stressors (Magoulick, 

2014). 

 

4.2 Temporal and spatial persistence of crayfish invasion effects 

Results from this study indicate that crayfish invasions have long term effects on 

rivers across a broad biogeographical range with invasion effects not dependent on 

a specific physical setting. Community impacts are evident and have persisted within 

all of the regions despite being characterised by different lithologies, flow regimes 

and habitat characteristics. Despite control and invaded rivers representing discrete 

communities following invasion in all sites, the degree of separation varied between 

regions. The effect of invasive crayfish is heavily dependent on original community 

composition as this dictates which species are preferentially predated. Communities 

which support abundant populations of taxa susceptible to predation will therefore be 

more severely affected following invasion events. We are aware of only two other 
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studies which have examined the long-term impact of invasive crayfish on benthic 

communities thus far (Wilson et al., 2004; McCarthy et al., 2006), however both were 

focussed on lentic systems in North America over limited spatial scales. Both studies 

reported significant modifications to benthic community composition with dramatic 

long term and potentially irreversible effects on the ecosystem evident as a whole. 

Results from the current investigation, provide the first quantitative evidence that 

crayfish invasion effects within rivers are long-standing and persist once the invading 

population has become established.  

Temporal trajectories of community change indicated that shifts occurred directly 

after invasion in the majority of rivers examined. As the precise date of invasion is 

not known for these rivers (IP indicates the point they were detected in routine 

benthic samples), it is likely that densities would have reached significant numbers 

before being formally detected and explains the immediate shift in community 

following the identified invasion point. Time lags are typically evident in invasion 

processes, with the effects on communities often taking several years to appear as 

densities of the invading organism increase (Saki et al., 2001; McCarthy et al., 2006). 

The ordination plots of all invaded rivers suggest that no recovery of the communities 

occurred following the establishment of crayfish populations, with control and 

invaded rivers displaying distinct trajectories. Changes to the macroinvertebrate 

community in invaded rivers appear to occur rapidly once crayfish densities are high 

enough to be detected in kick samples (Hiley, 2003). Consequently it is likely that 

there is a threshold effect at which impacts on the macroinvertebrate community 

become significant and potentially irreversible. Early detection of signal crayfish in 

lotic ecosystems through routine monitoring is therefore imperative in order to 

manage and potentially limit the implications of crayfish populations on the wider 

macroinverterbrate community and ecosystem.  

4.3 Taxa-crayfish interactions 

Despite differences in the response of individual taxa following invasion, the 

occurrence of a number of ubiquitous taxa significantly changed across all regions. 

The class Hirudinea is widely cited as being severely affected following crayfish 

invasion, typically demonstrating significant reductions in the abundance of taxa 

following the establishment of large crayfish populations (Stenroth and Nyström, 

2003; Crawford et al., 2006; Ruokonen et al. 2014). Results from this study provide 
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further evidence to support this with G. complanata displaying significant reductions 

in occurrence following crayfish invasion for both spring and autumn survey periods. 

The occurrence of E. octoculata was reduced considerably during the autumn 

months but displayed no significant differences during spring months (although 

reductions were evident). Differences in predation of these two taxa in spring months 

may be as a result of reproduction characteristics. Glossiphonids are the only leechs 

to brood and carry their young, whilst Erpobdellids form cocoons on the substrate, 

which may protect the young from predation during the months of March - July (Elliot 

and Mann, 1979).  A number of reasons have been speculated as potential 

mechanisms to account for the reduction of Hirudinea taxa following crayfish 

invasion including the predatory nature of leeches and direct competition for 

resources. The life history of a number of Hirudinea species is strongly associated 

with gastropod populations as a function of their ectoparasitic nature (Elliot and 

Mann, 1979; Ruokonen et al., 2014), although their low mobility and soft bodies most 

likely results in preferential predation by P. leniusculus (Stenroth and Nyström, 2003).  

 

The most widely cited taxa affected by invasive crayfish colonisation are gastropods 

and bivalves, with reductions in species richness, abundances and biomass widely 

reported (Weber and Lodge, 1990; Lodge et al., 1994; Nyström et al., 1996; 2001; 

Stenroth and Nyström, 2003; Dorn, 2013; Ruokonen et al., 2014). Results from this 

study indicate a significant effect of crayfish on Radix spp. with reductions in 

occurrence observed during both spring and autumn months. Gastropods have been 

cited as being particularly vulnerable to crayfish predation because of their limited 

speed of locomotion (Hanson et al., 1990; Nyström and Perez, 1998; Rosewarne et 

al., 2013).  However, not all mollusc taxa displayed similar responses. Sphaeriidae 

displayed no change in response to crayfish invasion (although some reductions 

were evident during spring months), nor did the non-native mud snail, P. 

antipodarum. Some life history characteristics may reduce predation effects and, as 

a consequence of their high predation risk, many gastropod species display 

avoidance behaviour by migrating above the waterline for several hours (Alexander 

and Covich, 1991; Crowl and Covich, 1990; Turner et al., 1999), whilst others 

demonstrate changes to their life history through enhanced growth rates and lowered 

reproduction rates (Hoverman et al., 2005). Under experimental conditions P. 

antipodarum has been shown to avoid predation through increased vertical migration 
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in the presence of crayfish (Haddaway et al., 2014). This avoidance mechanism 

would enable them to evade crayfish predation and may explain why their 

populations remain largely unchanged in this study despite evidence of selective 

predation of crayfish on gastropod species based upon handling times (time taken 

for crayfish to consume prey items, Crowl and Covich, 1990; Nyström and Perez, 

1998).  

 

Another taxon which is highly adaptable in their ability to evade predation and which 

displayed no change in occurrence for either spring or autumn months in this study 

was the freshwater amphipod G. pulex. This taxon has been widely cited as adopting 

various avoidance strategies in order to evade inter and intra-specific predation, 

including enhanced drift and locomotion, vertical migration and increased use of 

refuges (Andersson et al., 1986; McGrath et al., 2007; Haddaway et al., 2014). 

Consequently, it is likely that this species possesses a repertoire of strategies and 

defences towards predation, which potentially makes them able to evade crayfish 

more readily than other taxa.  

 

Richness of aquatic insect larvae within the orders of Ephemeroptera, Plecoptera 

and Trichoptera (EPT richness) is one of the most commonly employed bioindicators 

internationally (e.g. Ligeiro et al., 2013; Tonkin et al., 2015). However, the results 

from this study highlight that interpretations of order level responses to disturbances 

associated with invasive crayfish should be undertaken with caution, especially 

orders supporting highly variable habitat and feeding preferences and life histories. 

As a result we would propose the use of greater taxonomic resolution (genus or 

species level if possible) to provide the appropriate information to identify and 

disentangle taxa-specific interactions (Monk et al., 2012).  

 

Several studies considering the impact of crayfish, have discussed the impact of 

crayfish on Ephemeroptera as a whole order, rather than individual taxa (Guan and 

Wiles, 1998; Usio and Townsend, 2004). Results from previous research suggests 

that the effects on Ephemeroptera are not consistent, with some studies 

documenting a decrease in abundance (McCarthy et al., 2006) or selective predation 

by crayfish on individuals with a greater body size (Guan and Wiles, 1998), whilst 

others have reported an increase in abundance or no change at sites where crayfish 
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have invaded (Keller and Ruman, 1998; Usio and Townsend, 2004; Crawford et al., 

2006; Grandjean et al., 2011). Results from the current study indicate that as an 

order, individual Ephemeroptera taxa may display different responses to crayfish 

invasion. Within this study, the largely ubiquitous ephemeropteran genus Baetis 

demonstrated no change in occurrence during both spring and autumn months. This 

most likely reflects their relatively high mobility, thus enhancing their ability to evade 

crayfish predation (Peckarsky, 1996). However, not all Ephmeroptera taxa displayed 

positive or benign responses to crayfish invasion, with Caenis spp. demonstrating 

significant reductions in occurrence following crayfish invasion during both spring 

and autumn. This reduction may reflect habitat preferences of most Caenis spp. for 

fine sediment accumulations which makes them prone to ingestion or physical 

disturbance by foraging crayfish (Capelli, 1980; Gutierrez- Yurrita et al., 1998; Usio 

and Townsend, 2004; Helms and Creed, 2005).  

 

The Trichoptera Hydropsyche spp., also displayed a significant reduction in 

occurrence during both spring and autumn months following crayfish invasion. The 

majority of feeding activity by this taxa is through net building during spring and 

summer months, with net construction typically representing simple open structures 

to permit filter feeding (Edington and Hildrew, 1995). This sedentary activity in 

addition to the open nature of the fixed shelter (Mackay and Wiggins, 1979) may 

make them preferential prey for crayfish predation, in contrast to other caseless 

caddisfly larvae which are freeliving and mobile such as Rhyacophilidae (Elliot, 1968) 

or those which are much more hidden such as Psychomyiidae in fixed enclosed 

tunnel like galleries (Christian et al., 2005). 

 

5. Conclusion 

Crayfish are considered to be influential organisms within many aquatic ecosystems, 

interacting with all trophic levels of the food web (Creed, 1994; Momot, 1995). The 

results of this study provide direct evidence to suggest that the implications of 

crayfish invasion are persistent and result in major changes to benthic invertebrate 

communities, although the effects on the community are stronger during autumn. 

Invasion effects are not dependent on the physical and habitat characteristics of the 

lotic ecosystem, with modifications to macroinvertebrate communities evident across 

the range of bio-geographical regions typical of lowland rivers. The specific effects 
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on the invaded ecosystem are however dependent on original community 

composition. The resulting fauna affected and those which are responsible for the 

community changes observed may therefore vary between rivers. The spread of 

invasive taxa across the globe may also represent a significant challenge to ongoing 

environmental monitoring programmes. The results of this research clearly 

demonstrate that the predation and interaction of an invasive species with the 

receiving ecosystem can significantly modify aquatic community composition. These 

community modifications may thereby potentially affect the results of widely utilised 

biomonitoring indices and as a result care should be taken when interpreting routine 

biomonitoring data (i.e water quality, river flow or fine sediment pressures) where 

non-native / invasive taxa are known to be present (MacNeil et al., 2013, Mathers et 

al., 2016). This study highlights the value and need for further multi-scale research to 

fully understand the wider spatial and temporal implications of historic invasions to 

complement reach scale and mesocosm studies (Wilson et al., 2004; McCarthy et al., 

2006). This fundamental knowledge base is needed to inform and underpin 

management strategies which are aimed at controlling and mitigating the effects of 

invasive species (Moorhouse et al., 2014).  
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