115 research outputs found
Leader-Contention-Based User Matching for 802.11 Multiuser MIMO Networks
In multiuser MIMO (MU-MIMO) LANs, the achievable throughput of a client
depends on who are transmitting concurrently with it. Existing MU-MIMO MAC
protocols however enable clients to use the traditional 802.11 contention to
contend for concurrent transmission opportunities on the uplink. Such a
contention-based protocol not only wastes lots of channel time on multiple
rounds of contention, but also fails to maximally deliver the gain of MU-MIMO
because users randomly join concurrent transmissions without considering their
channel characteristics. To address such inefficiency, this paper introduces
MIMOMate, a leader-contention-based MU-MIMO MAC protocol that matches clients
as concurrent transmitters according to their channel characteristics to
maximally deliver the MU-MIMO gain, while ensuring all users to fairly share
concurrent transmission opportunities. Furthermore, MIMOMate elects the leader
of the matched users to contend for transmission opportunities using
traditional 802.11 CSMA/CA. It hence requires only a single contention overhead
for concurrent streams, and can be compatible with legacy 802.11 devices. A
prototype implementation in USRP-N200 shows that MIMOMate achieves an average
throughput gain of 1.42x and 1.52x over the traditional contention-based
protocol for 2-antenna and 3-antenna AP scenarios, respectively, and also
provides fairness for clients.Comment: Accepted on 12-Apr-2014 for publications at IEEE Transactions on
Wireless Communication
A Hint-Based Random Access Protocol for mMTC in 5G Mobile Network
With the increasing popularity of machine-type communication (MTC) devices, several new challenges are encountered by the legacy long term evolution (LTE) system. One critical issue is that a massive number of MTC devices trying to conduct random access procedures may cause significant collisions and long delays. In this work, we present a new random access mechanism by splitting the contention-based preambles in LTE into two logically disjoint parts, one for the user equipment (UE) being paged and the other for the UEs not being paged. Since the IDs of paged UEs are known by the base station, a novel hash-based random access, which we call hint, is possible. The main idea is to pre-allocate preambles to paged UEs in a contention-free manner and confines non-paged UEs to contend in a separate region. We further build a mathematical model to find the optimal ratio of pre-allocated preambles. Extensive simulations are conducted to validate our results
r-Hint: A message-efficient random access response for mMTC in 5G networks
Massive Machine Type Communication (mMTC) has attracted increasing attention due to the explosive growth of IoT devices. Random Access (RA) for a large number of mMTC devices is especially difficult since the high signaling overhead between User Equipments (UEs) and an eNB may overwhelm the available spectrum resources. To address this issue, we propose “respond by hint” (r-Hint), an ID-free handshaking protocol for contention-based RA in mMTC. The core idea of r-Hint is to avoid sequentially notifying contending UEs of their IDs by broadcasting a hint in the RA Response (RAR). To do so, we exploit the concept of prime factorization and hashing to encode the hint such that UEs can extract their required information accordingly. Our simulation results show that r-Hint reduces the RAR message size by 20%–40%. Such reduction can be translated to around 50% improvement of spectrum efficiency in LTE-M
On Scalable Service Function Chaining with O(1) Flowtable Entries
The emergence of Network Function Virtualization (NFV) enables flexible and agile service function chaining in a Software Defined Network (SDN). While this virtualization technology efficiently offers customization capability, it however comes with a cost of consuming precious TCAM resources. Due to this, the number of service chains that an SDN can support is limited by the flowtable size of a switch. To break this limitation, this paper presents CRT-Chain, a service chain forwarding protocol that requires only constant flowtable entries, regardless of the number of service chain requests. The core of CRT-Chain is an encoding mechanism that leverages Chinese Remainder Theorem (CRT) to compress the forwarding information into small labels. A switch does not need to insert forwarding rules for every service chain request, but only needs to conduct very simple modular arithmetic to extract the forwarding rules directly from CRT-Chain's labels attached in the header. We further incorporate prime reuse and path segmentation in CRT-Chain to reduce the header size and, hence, save bandwidth consumption. Our evaluation results show that, when a chain consists of no more than 5 functions, CRT-Chain actually generates a header smaller than the legacy 32-bit header defined in IETF. By enabling prime reuse and segmentation, CRT-Chain further reduces the total signaling overhead to a level lower than the conventional scheme, showing that CRT-Chain not only enables scalable flowtable-free chaining but also improves network efficiency
Hey! I Have Something for You: Paging Cycle Based Random Access for LTE-A
The surge of M2M devices imposes new challenges for the current cellular network architecture, especially in radio access networks. One of the key issues is that the M2M traffic, characterized by small data and massive connection requests, makes significant collisions and congestion during network access via the random access (RA) procedure. To resolve this problem, in this paper, we propose a paging cycle-based protocol to facilitate the random access procedure in LTE-A. The high-level idea of our design is to leverage a UE's paging cycle as a hint to preassign RA preambles so that UEs can avoid preamble collisions at the first place. Our rpHint has two modes: (1) collision-free paging, which completely prevents cross-collision between paged user equipment (UEs) and random access UEs, and (2) collision-avoidance paging, which alleviates cross-collision. Moreover, we formulate a mathematical model to derive the optimal paging ratio that maximizes the expected number of successful UEs. This analysis also allows us to adapt dynamically to the better one between the two modes. We show via extensive simulations that our design increases the number of successful UEs in an RA procedure by more than 3× as compared to the legacy RA scheme of the LTE
Rate adaptation for 802.11 multiuser mimo networks
In multiuser MIMO (MU-MIMO) networks, the optimal bit rate of a user is highly dynamic and changes from one packet to the next. This breaks traditional bit rate adaptation algorithms, which rely on recent history to predict the best bit rate for the next packet. To address this problem, we introduce TurboRate, a rate adaptation scheme for MU-MIMO LANs. TurboRate shows that clients in a MU-MIMO LAN can adapt their bit rate on a per-packet basis if each client learns two variables: its SNR when it transmits alone to the access point, and the direction along which its signal is received at the AP. TurboRate also shows that each client can compute these two variables passively without exchanging control frames with the access point. A TurboRate client then annotates its packets with these variables to enable other clients to pick the optimal bit rate and transmit concurrently to the AP. A prototype implementation in USRP-N200 shows that traditional rate adaptation does not deliver the gains of MU-MIMO WLANs, and can interact negatively with MU-MIMO, leading to low throughput. In contrast, enabling MU-MIMO with TurboRate provides a mean throughput gain of 1.7x and 2.3x, for 2-antenna and 3-antenna APs respectively.National Science Council (China) (contract No. NSC 100-2221-E-001-005-MY2)National Science Foundation (U.S.) (NSF Grant CNS-1117194
Random Access Heterogeneous Mimo Networks
This paper presents the design and implementation of 802.11n+, a fully distributed random access protocol for MIMO networks. 802.11n+ allows nodes that differ in the number of antennas to contend not just for time, but also for the degrees of freedom provided by multiple antennas. We show that even when the medium is already occupied by some nodes, nodes with more antennas can transmit concurrently without harming the ongoing transmissions. Furthermore, such nodes can contend for the medium in a fully distributed way. Our testbed evaluation shows that even for a small network with three competing node pairs, the resulting system about doubles the average network throughput. It also maintains the random access nature of today's 802.11n networks.United States. Defense Advanced Research Projects Agency. Information Theory for Mobile Ad-Hoc Networks ProgramNational Science Foundation (U.S.)
On Optimizing Signaling Efficiency of Retransmissions for Voice LTE
The emergence of voice over LTE enables voice traffic transmissions over 4G packet-switched networks. Since voice traffic is characterized by its small payload and frequent transmissions, the corresponding control channel overhead would be high. Semi-persistent scheduling (SPS) is hence proposed in LTE-A to reduce such overhead. However, as wireless channels typically fluctuate, tremendous retransmissions due to poor channel conditions, which are still scheduled dynamically, would lead to a large overhead. To reduce the control message overhead caused by SPS retransmissions, we propose a new SPS retransmission protocol. Different from traditional SPS, which removes the downlink control indicators (DCI) directly, we compress some key fields of all retransmissions' DCIs in the same subframe as a fixed-length hint. Thus, the base station does not need to send this information to different users individually but just announces the hint as a broadcast message. In this way, we reduce the signaling overhead and at the same time, preserve the flexibility of dynamic scheduling. Our simulation results show that, by enabling DCI compression, our design improves signaling efficiency by 2.16\times, and the spectral utilization can be increased by up to 60%
- …
