
On Scalable Service Function Chaining with O(1)
Flowtable Entries

Yi Ren, Tzu-Ming Huang, Kate Ching-Ju Lin, and Yu-Chee Tseng

Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

{renyi, tzuming, katelin, yctseng}@cs.nctu.edu.tw,

Abstract—The emergence of Network Function Virtualization
(NFV) enables flexible and agile service function chaining in
a Software Defined Network (SDN). While this virtualization
technology efficiently offers customization capability, it however
comes with a cost of consuming precious TCAM resources. Due
to this, the number of service chains that an SDN can support is
limited by the flowtable size of a switch. To break this limitation,
this paper presents CRT-Chain, a service chain forwarding
protocol that requires only constant flowtable entries, regardless of
the number of service chain requests. The core of CRT-Chain is an
encoding mechanism that leverages Chinese Remainder Theorem
(CRT) to compress the forwarding information into small labels.
A switch does not need to insert forwarding rules for every service
chain request, but only needs to conduct very simple modular
arithmetic to extract the forwarding rules directly from CRT-
Chain’s labels attached in the header. We further incorporate
prime reuse and path segmentation in CRT-Chain to reduce
the header size and, hence, save bandwidth consumption. Our
evaluation results show that, when a chain consists of no more
than 5 functions, CRT-Chain actually generates a header smaller
than the legacy 32-bit header defined in IETF. By enabling prime
reuse and segmentation, CRT-Chain further reduces the total
signaling overhead to a level lower than the conventional scheme,
showing that CRT-Chain not only enables scalable flowtable-free
chaining but also improves network efficiency.

I. INTRODUCTION

The emergence of Network Function Virtualization (NFV)

enables network operators to virtualize their network services

as Virtualized Network Functions (VNFs). Different from tra-

ditional network components (i.e., standalone physical devices,

each with only one network function), VNFs can be efficiently

scaled up/down and, hence, provide agility and flexibility to

adaptation of network components according to dynamic user

demands. With NFV, a Software Defined Network (SDN) is

able to deliver elastic services via Service Function Chain-
ing (SFC), which allows traffic to go through a customized

sequence of services, i.e., VNFs. Such SFC capability is

beneficial for supporting a large variety of applications defined

by operators or users.

The great flexibility of such VNF service chaining, however,

comes with a cost. A flow passing through a specific service

chain should be installed as forwarding rules (i.e., flowtable

entries) in Ternary Content-Addressable Memory (TCAM) of

SDN switches. That is, the required TCAM resources grow

linearly with the number of distinct service chain requests.

However, while TCAM reduces the forwarding delay signif-

icantly, it usually has a fairly limited capability due to its

extremely high cost and power consumption. Therefore, the

maximum number of service chains that can be served in an

SDN is typically limited by the scarce TCAM space of SDN

switches. The scalability is, hence, a fundamental challenge of

enabling such configurable service chaining.

To provide scalable, customizable service chaining, we

present CRT-Chain, a service chain forwarding protocol that

requires only constant flowtable entries, regardless of how

many SFC requests being served in the system. The key idea

of CRT-Chain is to leverage the Chinese Remainder Theorem

(CRT) to encode the forwarding rules of a service chain

into small labels, which can be embedded in the header of

a packet. Each switch then conducts very simple modular

arithmetic to extract forwarding rules directly from the CRT

labels. By doing this, CRT-Chain requires zero flowtable entry

to insert every new SFC request. The beauty of CRT-Chain
is that it replaces the cost of flowtable entries with a small

header overhead. Therefore, the proposed CRT-Chain can

be an efficient backup that compensates for the deficiency

of conventional flowtable-based chaining when the number

of SFC requests exceeds the TCAM capability or when an

operator prefers to reserve the precious TCAM resources for

other purposes.

To improve the efficiency of the proposed CRT-based ser-

vice chaining, we need to overcome some technical challenges.

First, in an SDN, a switch is usually connected to multiple

VNFs, and an SFC may request to be served by different

functions associated with the same switch in a specific order.

However, a naı̈ve CRT encoding scheme is oblivious of the

sequence of forwarding and, thereby, could lead to ambiguity.

Thus, we design a novel encoding algorithm that always guar-

antees the unique chaining path specified by the controller (see

Section IV-B). Second, to reduce the label size, we propose a

chain segmentation scheme that allows the overall label size

of all the segments to be smaller than the label size of the end-

to-end path. In addition, the last-hop switch of each segment

can discard the sub-header to further save overhead bandwidth

consumption (see Section IV-C). Finally, a CRT label size is

determined by the primes assigned to the functions along a

chain. Fortunately, different network functions usually have

heterogeneous importance and popularity. We hence exploit a

prime assignment strategy based on the distribution of function

popularity to reduce the expected label size (see Section IV-D).

We examine the protocol efficiency of CRT-Chain in terms

of the header size and the overall overhead bandwidth con-

sumption, with and without path segmentation. The evalua-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of East Anglia digital repository

https://core.ac.uk/display/196593142?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tion results demonstrate that, without path segmentation, the

average header size of CRT-Chain ranges from 5 bits to 55

bits when the length of a service function chain varies from 1

to 10. More specifically, the header of CRT-Chain is smaller

than the 32-bit legacy header defined in IETF when the chain

length is no longer than 5. By enabling path segmentation,

CRT-Chain can further reduce the total header size and even

allow switches to discard sub-headers in the middle of routing.

This allows CRT-Chain to consume much less bandwidth for

signaling as compared to the conventional chaining protocol.

We hence conclude that CRT-Chain not only saves flowtable

entries but also reduces the overall signaling overhead.

The rest of the paper is organized as follows. Section II

reviews the related works and Section III introduces the

background of service function chaining. Section IV gives an

overview of CRT-Chain and details the designs of CRT-Chain.

The implementation via simulations is presented in Section V,

followed by performance evaluation in Section VI. We finally

conclude in Section VII.

II. RELATED WORK

Related works on TCAM management and service chaining

fall in three categories.

A. Flowtable Management

Recent works [1]–[4] have investigated how to overcome

the limitation of scarce TCAM resources by reducing the

number of forwarding rules inserted to each switch. The

work [1] proposes to aggregate flows with identical forwarding

information so as to reduce the number of flowtable entries. A

later work [2] then extends [1] by formulating the aggregation

problem as an optimization model and achieving an order of

reduction. However, it builds on an assumption that a routing

table has a tree structure. On the other hand, a distributed

scheme [3] is proposed to decompose a large flowtable into

small ones that can be distributed across the network. By

optimizing the size of tables across the network, the total

number of flow entries can be reduced. It, however, does

not perform well when the path length is small due to the

fact that the performance is determined by the length of the

shortest path. The work [4] enhances [3] by caching the most

popular rules in a small TCAM. The rest small amount of

cache misses is handled by software. Cache misses, however,

introduce a much longer fetching delay between switches and

the controller. Our work differs from the above approaches

in that we manipulate a label encoding algorithm to replace

a large number of chaining rules with a constant number of

label forwarding rules.

B. Entry Size Reduction

Another branch of works [5]–[9] attempt to reduce the

size of each flowtable entry. Some [5] [6] propose to use a

short label to replace the long network address. The work [5]

appends a label to each packet for encoding the routing path,

while the other [6] attaches a label that encodes the routing

information of a flow, which in turn reduces the size of

(a) SFPs of the two SFCs

(b) legacy flowtable for SFF 7 (c) flowtable for SFF 7 in CRT-Chain

Fig. 1: Example of two SFC requests.

Forwarding Information Base (FIB) and complexity of inter-

domain routing. They, hence, avoid complex routing table

lookup. More recently, [7] proposes a novel forwarding table

architecture to compress flow entries. Others [8] [9] propose

to use MAC addresses as virtual addresses to minimize

the TCAM usage. The work [9] uses the destination MAC

address as a universal label to reduce the number of flow

entries and the size of each flow entry, without increasing the

packet header length. However, it requires explicit path-label

assignment, which is proven an NP-complete problem. Instead

of reducing the entry size, our design directly eliminates the

need of flowtable entries for each service chain, and is hence

scalable for a system supporting a large number of service

chains.

C. Flowtable-Free Routing

The works most related to ours are [10]–[12]. In [10], the

forwarding information of a flow traversing through a path is

encoded into a label, which is appended to each packet. Based

on [10], the work [11], [12] further shows how to reuse the

MAC address as the label, as a result introducing no additional

header information. However, the label could become very

large when the forwarding path is long or a network has a

large number of nodes. Our work leverages the properties of

sequential service requests in an SFC to design a novel label

encoding algorithm, which introduces a small overhead limited

by the number of function types (typically much smaller than

the number of nodes).

III. BACKGROUND OF SERVICE FUNCTION CHAINING

The SFC protocol defined in IETF RFC7665 [13] allows a

packet to be forwarded to and served by a sequence of one or

more L4-L7 services, which can be realized via NFV on top

of an SDN. For example, one can request to send a packet

through several service functions sequentially in a specific

order, such as firewall, Network Address Translation (NAT),

and Deep Packet Inspection (DPI). To improve reliability and

load-balancing, for each Service Function (SF), we can create

multiple SF instances, each installed in a Virtual Machine

(VM) associated with a different Service Function Forwarder

(SFF). An SFF can be a physical switch or a virtual switch that

helps forward packets of an SFC to a specified SF instance.

The functionality of an SFF is similar to that of a legacy

switch except that an SFF can insert/process the forwarding

rules generated for an SFC and can further know how to parse

the Network Service Header (NSH) of an SFC packet. Hence,

in this work, we use a universal term, forwarder, to denote

either a switch or an SFF.

As there exist many instances for an SF type, for each

SFC request, the controller has a flexibility of identifying

any available Service Function Path (SFP) that consists of

a sequence of the scheduled SF instances based on some

performance metrics (e.g., path length or traffic load). Consider

an example of two SFC requests, c1 and c2, as illustrated

in Fig. 1. SFC c1 requests to access SF3, SF11, and SF7

sequentially, while SFC c2 requests to access SF3 and SF7

sequentially. The orange path denotes the SFP of c1, which

goes through the instances SF3 (associated with SFF7), SF11

(associated with SFF13) and SF7 (associated with SFF13)

sequentially. Similarly, the green path denotes the SFP of c2.

The forwarding rules of each SF instance along the sched-

uled SFP are inserted to the flowtable of its associated SFF.

When an SFC packet arrives to an SFC-enabled domain, it

first enters an ingress classifier, which retrieves the SFP of

that SFC from the controller and appends an NSH indicating

this SFP to the packet. The packet is then forwarded to the

SFFs associated with the SF instances specified in the SFP

sequentially. Each SFF receiving this packet will look up

its flowtable and forward the packet to the associated SF

instance. The ingress classifier also uses the Service Index (SI)

(initialized to the SFP length) in NSH to indicate the length of

an SFP. Each SF instance along the SFP decreases the value

of SI by 1 such that all the SFFs can know whether an SFC

has been executed completely and should be forwarded to the

egress classifier.

While this forwarding mechanism is simple and easy to

implement, it is however not scalable. Since the forwarding

rules of each SFP should be inserted to the flowtable of SFFs

along the path, the number of the required flowtable entries

grows linearly with the number of SFC requests. Consider the

same example shown in Fig. 1, where both chains c1 and c2
are assigned to the SF3 instance associated with SFF7. The

conventional protocol will need to insert two sets of rules in

the flowtable of SFF7, each for a distinct SFC. This example

shows that, even when a large number of service chains share

the same forwarding rules, those rules need to be duplicated

and, thus, occupy a large number of entries in a flowtable. The

number of chains supported in the system is hence limited by

the flowtable size.

IV. CRT-Chain DESIGN

In this section, we first give an overview of CRT-Chain,

and then describe its key components. We begin by first

introducing the basic label encoding and forwarding procedure

of CRT-Chain. The extensions for enabling path segmentation

and popularity-aware prime assignment are then presented in

the end of the section.

A. Overview of CRT-Chain

To resolve the scalability issue, we propose CRT-Chain, a

flowtable-free service chaining protocol. The high-level idea

of CRT-Chain is to replace per-chain forwarding rules with

per-function forwarding rules. More specifically, for all the

chains requesting to be served by an SF instance, its associated

SFF inserts only one forwarding rule for this SF instance,

regardless of how many chains assigned to it. To this end,

CRT-Chain assigns each SF type and each forwarder a prime

and leverages the Chinese Remainder Theorem (CRT) to

encapsulate the service chain into a path label X and an SFP

label Y , respectively. The labels can replace the 32-bit service

path field of the legacy NSH defined in IETF. An SFF then

uses very simple modular arithmetic to extract the forwarding

information directly from the labels, without knowing which

chain it belongs to. Therefore, CRT-Chain only requires a

constant number of flowtable entries in each SFF and can

support a large number of SFC requests without limited by

the TCAM capability.

Consider the same example in Fig. 1. We assign SF3 a

prime, 3, and only insert one forwarding rule for SF3 based on

its prime to the flowtable of SFF7, even when there exist two

service chains assigned to its associated SF3 instance. We will

explain in detail how to encode the labels and how to forward

packets in Section IV-B. As CRT-Chain transfers the cost of

flowtable entries to the label overhead, we incorporate several

designs, including path segmentation (see Section IV-C) and

prime assignment (see Section IV-D), to minimize the label

size and reduce overhead bandwidth consumption.

B. CRT-based Chaining

CRT-Chain leverages CRT to enable flowtable-free service

chaining. We define F as a set of forwarders, which can be

either switches or SFFs that are connected to SF instances.

The Ingress Classifier (IC) and Egress Classifier (EC) are also

included in F . Let S denote the set of available SF types.

Note that each SF type s ∈ S can be installed in multiple VMs

associated with different SFFs. Let C denote the set of SFC

requests, where each c ∈ C is a sequence of requested SFs.

For each SFC request c ∈ C, we assume that the routing path,

denoted by P (c) = f1(c)→f2(c) · · ·→f|P (c)|(c), and the SFP,

denoted by SP (c) = s1(c)→s2(c) · · ·→s|SP (c)|(c), are both

given (i.e., determined by the controller). Here, |P (c)| and

|SP (c)| represent the path length and SFP length, respectively.

For example, in Fig. 1(a), the path of service chain c1 is

P (c1) = IC → S3 → SFF7 → SFF13 → S17 → EC, and

the SFP of c1 is SP (c1) = SF3(SFF7) → SF11(SFF13) →
SF7(SFF13). Note that the path and SFP scheduling prob-

lems for service chaining have been extensively investigated

recently in [14]–[18], and are not the scope of this work.

In our design, we encode the routing path P (c) and service

function path SP (c) of each c ∈ C into two variable length

labels, Xc and Yc, respectively. We let |Xc| and |Yc| denote

the path label length and the SFP label length, respectively.

Each forwarder decodes Xc and Yc to extract the forwarding

rules for routing and SFP, respectively, as summarized in

Fig. 2: CRT-Chain’s header format.

Algorithm 1. The encoding for P (c) and SP (c) are performed

independently, and Xc, Yc and a constant length step counter

N (initialized to 1) are concatenated together as CRT-Chain’s

NSH (N, lXc
,Xc, lYc

,Yc), as shown in Fig. 2, in which lXc

and lYc
are the constant length fields indicating |Xc| and |Yc|,

respectively, and their lengths can be set to log2 |Xmax| and

log2 |Ymax|, where Xmax and Ymax are the maximum possible

path label and SFP label, respectively. We will explain how to

derive Xmax and Ymax, respectively, later. This NSH replaces

the legacy NSH in each SFC packet.

We assign each forwarder in F a unique prime, and,

similarly, assign each SF type in S a unique prime. For

simplicity, we directly use the prime assigned to a forwarder

(SF) as the ID of the forwarder (SF). Note that, since the path

and SFP are encoded independently, a forwarder and an SF

can share the same prime. That is, f �= f ′, for all f, f ′ ∈ F ,

and s �= s′, for all s, s′ ∈ S , but f = s for any f ∈ F , s ∈ S is

allowed. Another thing worth noting is that multiple instances

of the same SF type s ∈ S use the same prime s. Namely, the

number of required SF primes is determined by the number

of SF types |S|, instead of the number of SF instances.

Encoding and decoding Xc: The encoding process of P (c)
for each c ∈ C is similar to the proposal in [10] [11].

However, since CRT-Chain’s SFP encoding is designed based

on path encoding, we first briefly describe how CRT-based

path encoding works. Given a path P (c), the path label Xc

should satisfy the following constraints:

Xc ≡ ei (mod fi(c)), ∀1 ≤ i ≤ |P (c)|, (1)

where fi(c) is the prime assigned to the i-th forwarder along

the path P (c) and ei is the egress port of flow P (c) in the

i-th forwarder fi(c). The solution of Xc can be found based

on CRT [19] as follows:

Xc = (
n∑

i=1

wi · ei) (mod X), (2)

where X =
∏|P (c)|

i=1 fi, wi = QiUi, Qi = X
fi

, and Ui =

Q−1
i (mod fi). Here, Ui is the multiplicative inverse of Qi

under modulo fi. Consider service chain c1 in the example

shown in Fig. 1(a), which traverses through forwarders with

primes 3, 7, 13 and 17 using the output ports 1, 3, 1 and

2, respectively. Hence, the path label Xc1 should meet the

following constraints:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xc1 ≡ 1 (mod 3)

Xc1 ≡ 3 (mod 7)

Xc1 ≡ 1 (mod 13)

Xc1 ≡ 2 (mod 17),

(3)

and we get Xc1 = 4, 252, which is appended to each packet

of c1. Based on the above encoding scheme, the maximum

Algorithm 1: CRT-Chain-FORWARD

Input: f : current forwarder; X : path label encoded

based on Eq. (2); Y: SFP label encoded based

on Eq. (5)

1 // extract SFP forwarding rules from Y
2 while true do
3 match ← false
4 for each SF with prime s associated with f do
5 let step be (Y mod s)
6 if step matches N in NSH then
7 match ← true
8 N ← N +1 and forward the packet to SF s
9 break;

10 if match = false then break
11 // extract routing forwarding rules from X

12 N ← N + 1 // increase step counter

13 e ← X mod f , and forward the packet through port e
14 return

possible path label Xmax can be found by encoding the label

for the longest possible path traversing through the forwarders

assigned the largest primes. The length of the field, lXc
, shown

in Fig. 2 can be set accordingly and announced to each

forwarder. Note that the length of lYc can be derived similarly.

To forward an SFC packet, each forwarder decodes Xc

and extracts the forwarding port by taking the same modular

arithmetic in Eq. (3) using its assigned prime (line 13 in

Algorithm 1). More specifically, forwarder fi(c) can obtain

the output port ei = Xc mod fi(c). For example, SFF7 can

find its output port by Xc1 mod 7 = 3.

Encoding and decoding Yc: The encoding of the SFP label

Yc is different from that of Xc since an SFF might associate

with multiple SF instances and, more importantly, the order

of forwarding to different SF instances matters. If we again

use the output port toward an SF instance as the remainder, its

associated SFF will not know the right forwarding sequence

of the requested SFs. For example, for c1 in Fig. 1(a), SFF13

connects to two SF instances and c1 should be sent to SF11

before SF7. To overcome this problem, we introduce a step

counter N for each SFC packet and, alternatively, use the step

count of each SF in SFP as the remainder for encoding Yc.

We use the example illustrated in Fig. 1(a) to explain SFP

encoding. In this case, c1 goes through SF3 , SF11 and SF7,

sequentially, and its SFP label Yc1 should meet the following

constraints: ⎧⎪⎨
⎪⎩

Yc1 ≡ 1 (mod 3)

Yc1 ≡ 2 (mod 11)

Yc1 ≡ 3 (mod 7),

(4)

which results in Yc1 = 178. Once a packet arrives to an SFF,

it first extracts the current step counter N from the header

and uses the primes assigned to the SF types of its associated

instances to check how the packet should be forwarded.

Specifically, when the packet is received by SFF7, it has not

been served yet and, hence, has the step counter initialized

to 1. SFF7 uses Yc1 and the primes of SF3 and SF11 to get

the remainders Yc1 mod 3 = 1 and Yc1 mod 11 = 2 (lines

4–5). Since the remainder of SF3 matches the current step

counter, SFF7 knows that the packet should be forwarded to

the SF3 instance and then adds the step counter N by 1 (lines

6–9). Since a chain might go through multiple SF instances

associated with the same SFF, an SFF should perform such

forwarding repetitively until all the remainders obtained by

the primes of the associated SFs do not match the current

step counter (lines 3 and 10). SFF13 can similarly use the

primes of the associated SF instances, 7 and 11, to find that

the remainders equal to 3 and 2, respectively, showing that the

forwarding order is SF11 followed by SF7.

Ensuring unique SFP forwarding: This simple CRT encod-

ing, however, cannot always guarantee correct SFP scheduled

by the controller. Since CRT-Chain assigns different instances

of an SF type the same prime, an SFC packet might not be

forwarded to the specified SF instance correctly if any of SF

instances associated with an SFF happens to be the same with

the first scheduled SF instance of the next SFF along the SFP.

Consider again c1 in Fig. 1(a). Although its request for SF11

can be served by either the instance associated with SFF7

or the one associated with SFF13, the controller can exactly

specify which instance should be used to improve network

performance, e.g., latency reduction or load balancing. In

our example, c1 is assigned to SF11 associated with SFF13.

However, one might observe that SFF7 also connects to an

instance of SF11 and will get a remainder matching the step

counter (i.e., 2) when the packet returns to SFF7 from SF3. In

this case, SFF7 will make a mistake and incorrectly forward

c1 to its SF11 instance. Though this minor mistake does not

affect the serving sequence of functions, it, however, would

disturb traffic management expected by the controller.

To avoid this ambiguity, we propose a new way to calculate

the step count. More specifically, we combine all the for-

warders along P (c) and all the SF instances along SP (c) into

a merged path MP (c) in their traversing order. For example,

for c1 in Fig. 1(a), P (c1) and SP (c1) can be merged to a list

MP (c1) = (1) S3 → (2) SFF7 → (3) SF3 → (4) SFF13 →
(5) SF11 → (6) SF7 → (7) S17, where the number within a

brace indicates the step count of the corresponding forwarder

or SF instance. Given the merged list MP (c), CRT-Chain now

encodes the SFP label Yc using the step counts of SF instances

in MP (c), rather than the original step counts in SP (c), as the

remainders. For the above example, the step counts for SF3,

SF11, and SF7 become 3, 5, and 6, respectively. This small

trick addresses the ambiguity problem since different instances

of an SF type associated with various SFFs must correspond

to different step counts when a packet traverses from one SFF

to another. For example, if we alternatively assign c1 in Fig. 1

to SF11 connected to SFF7, the step count of SF11 will be

4 as this SF11 instance becomes located in between SF3 and

SFF13 in the resulting merged path.

With this update, Yc should now satisfy the following

constraints:

Yc ≡ ixn (mod sn(c)), ∀1 ≤ n ≤ |SP (c)|, (5)

where ixn denotes the step count (index) of sn(c) in the

merged path MP (c). To ensure unique routing, all the for-

warders then modify its decoding process as follows: each

forwarder (a switch or SFF) now also needs to add the step

counter N in the header by one before a packet departs and

heads to the next forwarder (line 12). By doing this, when a

packet is sent to a forwarder or an SF instance, its step count

N matches the order of the forwarder/SF in MP (c).

C. Chain Segmentation

In CRT-Chain, the header overhead, i.e., |Xc| and |Yc|, is

determined by the primes used in the congruence system, i.e.,

Eqs. (1,5). Typically, larger primes lead to larger labels, Xc

and Yc. As CRT-Chain assigns each forwarder (SF) a unique

prime, the header size scales up with the number of forwarders

(SF types) in a network. An intuitive solution to reducing the

header size is to allow different forwarders (SFs) to use the

same prime, as a result minimizing the number of primes

we need. For example, given F (S), instead of using |F|
(|S|) unique primes, we can use only α|F| (α|S|) smallest

primes, where α is referred to as the prime reuse rate and

0 < α ≤ 1. Specifically, each forwarder (SF) is assigned

one prime randomly selected from those α|F| (α|S|) smallest

primes. Hence, on average, each prime is reused 1/α times

by 1/α forwarders (SFs). However, to ensure the CRT-based

algorithm to work properly, each forwarder (SF) along the

same routing path (SFP) should be assigned a unique prime.

When some forwarders (SFs) share the same prime, there will

be problem if they happen to belong to the same path (SFP).

To avoid this problem while embracing the efficiency of prime

reuse, we propose a segmentation technique that partitions a

path (SFP) into several subpaths, in each of which any two

forwarders (SFs) do not share the same prime.

Partitioning a path: To perform conflict-free segmentation,

for each path P (c) (SFP SP (c)) of a chain c, we trace

the path and check whether any f∈P (c) (s∈SP (c)) has a

prime duplicated with any one locating prior to it. For any

duplicated prime found, the path should be cut here, making

those forwarders (SFs) prior to it as a conflict-free subpath1.

Consider an example path P (c) = f1→f2→f3→f4→f5
assigned the primes 5→13→5→2→7. It should be partitioned

into two conflict-free subpaths: P1(c) = f1→f2 = 5→13
and P2(c) = f3→f4→f5 = 5→2→7. Note that an SFP

can be partitioned in a similar way. After partitioning, the

labels Xc,i and Yc,i of each subpath i can be encoded in

the similar way as mentioned in Sec. IV-B. Those sub-labels

are then concatenated together as the header in the format

of (N, lXc,1
,Xc,1, lYc,1

,Yc,1, · · · , lXc,i
,Xc,i, lYc,i

,Yc,i, · · ·),
where N is again the step counter initialized to 1, and lXc,i

and lYc,i indicate |Xc,i| and |Yc,i|, respectively.

1A forwarder and an SF in the same MP (c) can have the same prime.

Algorithm 2: FORWARD-SEGMENT

Input: (N,Xc,now,Yc,now,Xc,now+1,Yc,now+1, · · ·):
remaining NSH; f : current forwarder;

1 perform SF forwarding as mentioned in Algorithm 1

2 // check whether it is the last-hop of the subpath Pnow

3 if (Xc,now mod f) is not a valid port then
4 discard Xc,now and Yc,now

5 Xc,now ← Xc,now+1 and Yc,now ← Yc,now+1

6 N ← N + 1 // increase step counter

7 e ← Xc,now mod f , and forward the packet through

port e
8 return

Forwarding subpaths: The remaining problem is how can a

forwarder know which sub-label (Xc,i,Yc,i) it should decode

and when should a sub-label be discarded. To this end, we

propose a variation of label encoding such that each forwarder

can leverage the similar modular arithmetic and a clever

detection rule to determine whether to terminate a subpath.

Our design is motivated by an observation that each forwarder

has a limited number of output ports. Hence, we can use

this parameter to encode the termination rule of a subpath.

More specifically, let of denote the maximum output port

of forwarder f . Recall that in CRT-Chain’s routing, each

forwarder with prime f finds its output port by (Xc,i mod f).
If we want to force the last-hop forwarder f to terminate the

current subpath Pi(c) and truncate the sub-label (Xc,i,Yc,i),
we can modify the modulo constraint for f ∈ Pi(c) to

Xc,i ≡ enull (mod f), (6)

where the remainder enull can be any integer number larger

than the maximum output port of . By doing this, the last-hop

forwarder f of a subpath will get an invalid port enull and

easily detect that it should end the current subpath. Then, the

forwarder drops the current sub-label (Xc,i,Yc,i), extracts the

next one (Xc,i+1,Yc,i+1), and initiates the forwarding process

for subpath Pi+1(c), as summarized in Algorithm 2.

D. Prime Assignment

The label sizes |Xc| and |Yc| are also related to how

primes are assigned to forwarders and SF types. While CRT-
Chain already enables path segmentation to minimize the

maximum prime used in the system, we can further reduce the

header overhead by decreasing the probability of using those

large primes. More specifically, so far we assume that primes

are randomly assigned to forwarders and SFs. However, if,

unfortunately, a large prime is used by a forwarder or SF type

that is traversed frequently, many paths going through those

popular SFs with large primes can output large labels.

To reduce the header size for all the chains in C in a

probabilistic way, we propose to assign primes to forwarders

and SFs according to their popularity (or loading). Intuitively,

a frequently-used forwarder (SF type) is more likely to be

included in a path P (c) (SFP SP (c)). Hence, to minimize the

expected header size of service chains, we should assign small

0 50 100 150 200 250 300

number of SFC requests

0

50

100

150

200

250

300

350

nu
m

be
r

of
 e

nt
rie

s
pe

r
S

F
F

CRT-chain
legacy NSH

Fig. 3: Impact of the number of SFC requests on flowtable usage.

primes to heavy loaded forwarders and popular SF types, while

letting less used ones have large primes. To this end, we count

the number of chains that traverse through a forwarder f ∈ F
(SF s ∈ S), denoted by the popularity score wf (ws), and

sort f ∈ F (s ∈ S) in descending order of their popularity ws

(wf). Each forwarder f (SF type s) is then assigned a unique

prime, from small to large, in order.

If CRT-Chain allows prime reuse, we just need to replicate

a prime for 	1/α
 times, 0 < α ≤ 1 and, again, sort all

the replica in ascending order, which are then assigned to the

forwarders (SFs) in descending order of their popularity. By

doing this, we can enable popularity-aware prime assignment

even when forwarders (SFs) share α|F| (α|S|) primes.

V. IMPLEMENTATION

We implement a simulation framework of CRT-Chain. The

physical switches, each with four ports, are connected as a

4-pod fat-tree topology with the block factor (i.e., the ratio of

the number of downlink ports to that of uplink ports) set to 1.

Namely, a network consists of 20 switches. Each of the eight

edge switches is connected to two physical servers. Each of the

16 servers has a virtual switch acting as an SFF that connects

to four VMs, each supporting a service, i.e., an instance of any

s ∈ S . Each forwarder (switch or SFF) is assigned a prime

based on Section IV-D.

Note that, in our implementation, a network accommodates

64 VMs and, hence, is capable of supporting 64 SF instances in

total. We deploy SF instances in VMs based on two strategies:

1) random and 2) popularity-aware. For random deployment,

all the SFs have an equal number of instances, i.e., 64/|S|,
and each VM installs an instance of an SF randomly selected

from S . For popularity-aware deployment, we randomly assign

each SF type a popularity score ws (i.e., request probability).

The popularity scores of all SF types s ∈ S are normalized

to 1, i.e., ws = ws/(
∑

s′∈S ws′). We then make the number

of instances of SF s proportional to its popularity ws, but

ensure every SF s has at least one instance. Roughly speaking,

	64 ∗ ws
 instances are created for each SF type s, and each

is deployed in a randomly selected VM.

To generate an SFC of length l, we iteratively pick an SF

type from S and combine the l randomly selected SF types as

a chain. We use the popularity ws to sample a requested SF.

Random sampling is equivalent to assigning all the SF types

an equal popularity. Since our work assumes that the physical

routing path and the service function path of an SFC is given,

1 2 3 4 5 6 7 8 9 10

SFC Length

106

1011

1016

1021

va
lu

e
of

 S
F

P
 la

be
l

random (max)
popularity (max)
random (mean)
popularity (mean)

(a) value of SFP label Y

1 2 3 4 5 6 7 8 9 10

SFC Length

0
10
20
30
40
50
60
70
80

S
F

P
 la

be
l s

iz
e

(b
its

) random (max)
popularity (max)
random (mean)
popularity (mean)
legacy NSH

(b) size of SFP label Y
Fig. 4: Impact of the length of SFCs.

we need to further apply some algorithms to determine the

path and SFP for each SFC. Here, we implement a simple and

practical algorithm as follows: the SFP SP (c) is initialized as

an empty set, and, for each SF request s in the chain c in

order, we pick the lightest loaded instance of s and insert it

into SP (c). Any pair of consecutive SF instances in SP (c)
are then connected by a shortest subpath found by the Floyd-

Warshall Algorithm [19], and all the subpaths are combined

into the final routing path P (c).

VI. PERFORMANCE EVALUATION

We conduct extensive numerical studies via simulations

to evaluate the performance of CRT-Chain. Unless otherwise

stated, the number of SF types and the SFC length are set to

16 and 10, respectively, by default. Since our CRT-based SFP

label Y can be combined with any routing protocol, we mainly

focus on comparing the overhead of Y to that of the 32-bit

service path field in the legacy NSH. We will finally check the

overall CRT-based header size as the SFP label Y is combined

with the CRT-based routing label X . In each configuration, we

generate 1,000 SFC requests of the same length and report the

average result of 100 random runs.

A. Impact of the Number of SFC Requests

We first verify whether CRT-Chain can be scalable as sup-

porting an increasing number of SFC requests. Fig. 3 illustrates

the average number of flowtable entries inserted into an SFF by

conventional service chaining and CRT-Chain, respectively, for

various numbers of SFCs. The results verify that the number of

flowtable entries required by legacy chaining grows linearly as

the number of requests increases. However, CRT-Chain only

needs a few rules representing the primes assigned to each

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

prime reuse rate (α)

0

1

2

3

4

5

6

7

nu
m

be
r

of
 s

eg
m

en
ts

(a) average number of segments

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

prime reuse rate (α)

0

10

20

30

40

50

60

S
F

P
 la

be
l s

iz
e

(b
its

)

CRT-chain (max)
CRT-chain (mean)
legacy NSH

(b) total overhead of all SFP sub-labels Yi

Fig. 5: Impact of prime reuse rate α.

SFF and its associated SFs. Hence, CRT-Chain only requires

a constant number of flowtable entries in each SFF, regardless

of how many service chains going through it. This supports

that CRT-Chain is especially efficient when a system needs to

serve a large number of service chains but is short of TCAM

resources in some switches.

B. Impact of the Length of SFCs

We next examine the impact of the SFC length on CRT-
Chain’s SFP label size. Recall that, as encoding an SFP label

Yc, the step counts of the SF instances along the SFP are used

as the remainders. In addition, the prime assigned to each SF

type should be no smaller than the maximum step size, i.e., the

SFC length. As a result, a longer SFC could lead to a larger

label size |Yc|. The objective of this simulation is to check

how the SFP label size |Yc| grows as an SFC gets longer.

Figs. 4(a) and 4(b) show the value of label Yc and the

label size in bits, respectively, for various SFC lengths. We

observe that the label size increases nearly lineally as the

SFC length grows. The popularity-aware prime assignment

explicitly considers the access probability of each SF type,

and, hence, results in a smaller average label size since the

popular SFs can use small primes. More specifically, for an

SFC including 5 SFs, the label Y consumes only 34 bits and 32

bits, on average, in random assignment and popularity-aware

assignment, respectively. We also report the maximum possible

overhead of label Y , which is found by calculating the label for

a service chain with l SFs assigned the l largest primes. The

results show that, for a chain with 5 SFs, the maximum label

sizes in random assignment and popularity-aware assignment

are 43 bits and 40 bits, respectively, which are only slightly

longer than the legacy 32-bit NSH. This confirms that CRT-

1 2 3 4 5 6 7 8 9 10

SFC length

0

20

40

60

80

100
S

F
P

 la
be

l s
iz

e
(b

its
)

16 types
32 types
64 types
128 types

(a) various SFC lengths

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

prime reuse rate (α)

0

20

40

60

80

100

S
F

P
 la

be
l s

iz
e

(b
its

)

16 types
32 types
64 types
128 types

(b) various prime reuse rates α

Fig. 6: Impact of the number of SF types.

Chain can effectively enable flowtable-free chaining at a fairly

small expense of additional overhead.

C. Impact of Prime Reuse and Path Segmentation

We now examine how path segmentation reduces the label

overhead when the prime reuse rate α (defined in Sec-

tion IV-C) varies from 0.1 to 1. In particular, each prime

is used by 	1/α
 SF types. To avoid forwarding errors, we

then leverage CRT-Chain’s path segmentation to encode sub-

labels such that all the SFs in each sub-SFP have unique

primes. Fig. 5(a) plots the average number of SFP segments

for various settings of α. As expected, when the prime reuse

rate decreases, more SF types use the same prime. Hence, we

might need to partition a path into an increasing number of

segments. The figure however shows that we only need around

3 segments, on average, even when α is as low as 0.4.

To understand how the number of segments affects the

overall label overhead, we further plot in Fig. 5(b) the total

label size of all the segments along an SFP for various prime

reuse rates. Note that the case of α = 1 indicates the CRT-
Chain scheme without segmentation. The results show that the

overall overhead actually decreases continuously, rather than

increases, as the prime reuse rate is decreased, resulting in

more segments. The average overhead reduction can be up

to 20%. The main reason is that, though we need more sub-

labels for the partitioned segments, the size of each sub-label

becomes much smaller as the SFs can share the smaller primes.

D. Impact of the Number of SF Types

We further examine the impact of the number of SF types

on the SFP label size, with and without path segmentation.

Fig. 6(a) plots the impact of the SFC length on the SFP

label size |Y| when the number of SF types is set to 16, 32,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

prime reuse rate (α)

0

500

1000

1500

2000

2500

ba
nd

w
id

th
 c

on
su

m
pt

io
n

(b
its

)

CRT-chain
legacy NSH

Fig. 7: Impact of prime reuse rate α on bandwidth consumption.

64, and 128, respectively. In this simulation, we apply our

popularity-aware prime assignment, but disable prime reuse

and path segmentation. The results show that, similar to the

trend shown in Fig. 4(b), the label size, in general, grows as

the SFC length increases. When more SF types are supported

in the system, the label size is further increased as some SFs

are now assigned large primes. However, the average label

size is only increases slightly when the number of SF types

increases from 16 to 128.
We also plot in Fig. 6(b) the impact of the prime reuse rate

α on the SFP label size |Y| for various numbers of SF types. In

this simulation, the SFC length is set to 10. The figure shows

that the amount of overhead reduction from reusing primes is

to some extent independent of the number of SF types. More

specifically, no matter how many SF types a system supports,

reusing primes reduces the label size by around 25 bits at

most. This implies that the percentage of overhead saving is

higher when there are fewer SF types.

E. Impact of Segmentation on Bandwidth Consumption
Another benefit of path segmentation is that it also helps

reduce the overall overhead bandwidth assumption when the

last hop of each segment can drop the sub-label of the

current subpath before forwarding a packet to the next subpath,

making the header become shorter continuously as the packet

traverses through its end-to-end path. We hence examine how

discarding sub-labels saves the overall bandwidth consump-

tion, which is defined as the total number of header bits sent

over any network link. Specifically, a header bit sent through

an l-hop path will consume bandwidth resources of l bits.
Fig. 7 illustrates that, as compared to no segmentation

(i.e., α = 1), segmentation reduces the overall bandwidth

consumption by up to 64%. The bandwidth saving increases as

the prime reuse rate α decreases due to the fact that a smaller

reuse rate cuts a path into more smaller segments, increasing

the opportunities of dropping sub-labels in the middle of the

path. It is also worth noting that, while the initial size of CRT-
Chain’s header is mostly larger than the legacy NSH length (32

bits), as shown in Fig. 5(b), CRT-Chain’s header bandwidth

consumption is however much smaller than that required by

the legacy NSH when α is less than or equal to 0.8. We hence

conclude that, by enabling prime reuse and segmentation, CRT-
Chain not only saves flowtable entries significantly but also

reduces the header bandwidth consumption required by service

chaining, i.e., total overhead of NSHs.

125 180 245 320 405 500 605 720 845 980

number of switches

0

100

200

300

to
ta

l h
ea

de
r

si
ze

 (
bi

ts
)

|X| (|S| = 30)
|Y| (|S| = 30)
|X| (|S| = 60)
|Y| (|S| = 60)
|X| (|S| = 90)
|Y| (|S| = 90)

Fig. 8: Overall CRT-based label size.

F. Overall Overhead

We finally examine the total header size when we combine

our CRT-based SFP forwarding with CRT-based routing, i.e.,

the size of (X ,Y). In this simulation, we disable segmentation

and change the port of each switch from 10 to 28, which

corresponds to the number of switches from 125 to 980 in

a fat-tree topology. Fig. 8 plots the average header size for

different network scales when the system supports 30, 60,

and 90 SF types, respectively. The results show that the path

label size |X | grows slightly as the number of switches/SFFs

increases since each one is more likely to use a large prime.

In addition, an increasing number of switches (pods) in the

fat-tree topology also increases the chances of having a path

across different pods, as a result further increasing the path

length and enlarging its path label. However, since the SFP

length is independent of the path length, the SFP label size

|Y| hence stays constant for the same number of SF types.

That is, the SFP label length |Y| is mainly determined by the

number of SF types.

We can also see that the path label size |X | is much larger

than the SFP label size |Y|. This is because the label size is

closely related to the maximum prime used for calculating the

label. As the number of forwarders is typically much larger

than the number of SF types, the maximum prime assigned to

forwarders is much larger than the maximum prime assigned to

SF types, therefore leading to a larger path label. That is to say,

for each SFC, enabling CRT-based SFP requires less overhead

and is, hence, more efficient than enabling CRT-based routing.

Therefore, when a forwarder is short of flowtable entries, we

should favor replacing SFP forwarding rules with SFP labels

Y over replacing routing rults with path labels X .

VII. CONCLUSION

In this paper, we have presented CRT-Chain, a CRT-based

service function chaining protocol. CRT-Chain leverages the

Chinese remainder theory to encode both the routing path and

the SFP of an SFC into small labels. Switches and SFFs can

forward a packet by simply extracting the forwarding rules

from the labels attached in its NSH, without requiring to insert

forwarding rules for every individual SFC request. While CRT-
Chain only inserts the information about the primes allocated

to a forwarder and its associated SFs into its flowtable, it

only needs a constant number forwarding rules, regardless

of how many SFC requests served in a system. We present

extensive results comparing the protocol efficiency of CRT-
Chain to that of the legacy scheme, and demonstrate that CRT-
Chain can efficiently support flowtable-free chaining at a fairly

small cost of additional header overhead. By further enabling

path segmentation, we further reduce the overall bandwidth

consumption to a level smaller than the legacy NSH, showing

that CRT-Chain not only saves flowtable usage but also reduces

the signaling overhead.

ACKNOWLEDGEMENT

This work was supported in part by the Ministry of Science

and Technology of Taiwan under grant numbers MOST 106-

2628-E-009-004-MY3 and Inventec.

REFERENCES

[1] X. Zhao, Y. Liu, L. Wang, and B. Zhang, “On the aggregatability of
router forwarding tables,” in Proc. IEEE INFOCOM, 2010.

[2] Q. Li, D. Wang, M. Xu, and J. Yang, “On the scalability of router
forwarding tables: Nexthop-selectable FIB aggregation,” in Proc. IEEE
INFOCOM, 2011.

[3] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing tables in
software-defined networks,” in Proc. IEEE INFOCOM, 2013.

[4] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “CacheFlow:
Dependency-aware rule-caching for software-defined networks,” in Proc.
ACM SOSR, 2016.

[5] A. Viswanathan, N. Feldman, Z. Wang, and R. Callon, “Evolution of
multiprotocol label switching,” IEEE Commun. Mag., vol. 36, no. 5, pp.
165 – 173, May 1998.

[6] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica, “Pathlet routing,”
in Proc. ACM SIGCOMM, 2009.

[7] O. Rottenstreich, M. Radan, Y. Cassuto, I. Keslassy, C. Arad, T. Mizrahi,
Y. Revah, and A. Hassidim, “Compressing forwarding tables for data-
center scalability,” IEEE J. Sel. Areas Commun., vol. 32, no. 1, pp.
138–151, 2014.

[8] K. Agarwal, C. Dixon, E. Rozner, and J. Carter, “Shadow MACs: Scal-
able label-switching for commodity ethernet,” in Proc. ACM HotSDN,
2014.

[9] A. Schwabe and H. Karl, “Using MAC addresses as efficient routing
labels in data centers,” in Proc. ACM HotSDN, 2014.

[10] H. Wessing, H. Christiansen, T. Fjelde, and L. Dittmann, “Novel scheme
for packet forwarding without header modifications in optical networks,”
IEEE/OSA J. Lightw. Technol., vol. 20, no. 8, pp. 1277 – 1283, Aug.
2002.

[11] M. Martinello, M. Ribeiro, R. E. Z. de Oliveira, and R. de Angelis Vitoi,
“KeyFlow: a prototype for evolving SDN toward core network fabrics,”
IEEE Network, vol. 28, no. 2, pp. 12 – 19, 2014.

[12] Y. Ren, T.-H. Tsai, J.-C. Huang, C.-W. Wu, and Y.-C. Tseng, “Flowtable-
free routing for data center networks: A software-defined approach,” in
Proc. IEEE GLOBECOM, 2017.

[13] J. M. Halpern and C. Pignataro, “Service Function Chaining
(SFC) Architecture,” RFC 7665, October 2015. [Online]. Available:
https://rfc-editor.org/rfc/rfc7665.txt

[14] M. C. Luizelli, W. L. da Costa Cordeiro, L. S. Buriol, and L. P.
Gaspary, “A fix-and-optimize approach for efficient and large scale
virtual network function placement and chaining,” Comput. Commun.,
vol. 102, pp. 67–77, apr 2017.

[15] H. Huang, S. Guo, J. Wu, and J. Li, “Service chaining for hybrid network
function,” IEEE Trans. Cloud Comput., vol. PP, no. 99, pp. 1–1, 2017.

[16] Z. Xu, W. Liang, M. Huang, M. Jia, S. Guo, and A. Galis, “Approxi-
mation and online algorithms for NFV-enabled multicasting in SDNs,”
in Proc. IEEE ICDCS, 2017.

[17] T. W. Kuo, B. H. Liou, K. C. J. Lin, and M. J. Tsai, “Deploying chains
of virtual network functions: On the relation between link and server
usage,” in Proc. IEEE INFOCOM, 2016.

[18] A. Gushchin, A. Walid, and A. Tang, “Enabling service function
chaining through routing optimization in software defined networks,”
in Proc. IEEE Annu. Allert. Conf., 2016.

[19] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

