9 research outputs found

    Kinetics of early stages of resorcinol-formaldehyde polymerization investigated by solution phase nuclear magnetic resonance spectroscopy

    Get PDF
    Resorcinol and formaldehyde reactions were quantitatively monitored by means of 1H and 13C NMR spectroscopy at room temperature (293 K) before heat treatment leading to formation of organic gels. We found that resorcinol substitution with formaldehyde starts with an initial surprisingly rapid step followed by a more gradual depletion of the reactants. Substituted species with both monomeric and dimeric hydroxymethyl groups were observed immediately after mixing of the reagents with the proportion of formaldehyde-based solution species consumed between 30 and 50%. Substituted resorcinol species can be all accounted for by solution-phase NMR at ambient conditions before they form nanoscale clusters upon heating. It can therefore be expected that the final properties of resorcinol-formaldehyde gels depend not only on the composition of reaction mixtures and duration of the high temperature treatment but also on the manner and period of reagent mixing (a hitherto overlooked synthesis step), as different amounts of alternatively substituted resorcinol can be produced before heat treatment commences

    Investigation of IR and Raman spectra of species present in formaldehyde-water-methanol systems

    Get PDF
    Formaldehyde forms a variety of hydrated and methoxylated species when reacted with water and methanol. Vibrational spectroscopy has been deployed for both remote and in situ sensing of formaldehyde species and it can be a useful tool for process development, monitoring and control at both laboratory and industrial scale, as well as for environmental, atmospheric and space monitoring. While IR and Raman spectroscopic studies of formaldehyde species in solid, liquid or gas phases have been reported, assignments of vibrational frequencies of relevant species in previous literature have been contradictory and incomplete. In this work we report IR and Raman spectra for formaldehyde-water-methanol solutions across a wide range of formaldehyde concentrations and solvent compositions. We present an analysis of vibrational spectra of formaldehyde-water-methanol systems using a combination of experimental measurements and gas phase quantum mechanical density functional theory simulations. For the first time, we explicitly consider spectra of oligomeric mixtures of formaldehyde species in relation to spectra of specific representative hydrated and methoxylated species and we resolve some previously reported contradictions in assignments of vibrational frequencies for formaldehyde systems

    Mechanism and kinetics of nanostructure evolution during early stages of resorcinol-formaldehyde polymerisation

    No full text
    Resorcinol and formaldehyde react in aqueous solutions to form nanoporous organic gels well suited for a wide range of applications from supercapacitors and batteries to adsorbents and catalyst supports. In this work, we investigated the mechanism and kinetics of formation of primary clusters in the early stages of formation of resorcinol–formaldehyde gels in the presence of dissolved sodium carbonate. Dynamic Light Scattering measurements showed that size of freely diffusing primary clusters was independent of both reactant and carbonate concentrations at a given temperature, reaching the mean hydrodynamic radius of several nanometres before further changes were observed. However, more primary clusters formed at higher carbonate concentrations, and cluster numbers were steadily increasing over time. Our results indicate that the size of primary clusters appears to be thermodynamically controlled, where a solubility/miscibility limit is reached due to formation of certain reaction intermediates resulting in approximately monodisperse primary clusters, most likely liquid like, similar to formation of micelles or spontaneous nanoemulsions. Primary clusters eventually form a particulate network through subsequent aggregation and/or coalescence and further polymerisation, leading to nanoscale morphologies of resulting wet gels. Analogous formation mechanisms have been previously proposed for several polymerisation and sol–gel systems, including monodisperse silica, organosilicates and zeolites

    11. Seminarium Open Access, 19-23.10.2020

    No full text
    Seminarium Open Access organizowane jest każdego roku w Bibliotece Uniwersytetu Łódzkiego w ramach obchodów International Open Access Week. Edycja 2020 odbyła się w dniach 19-25.10.2020 r. pod hasłem „Open with purpose: taking action to built structural equity and inclusion” - „Otwieraj z sensem: działaj, by wyrównywać szanse i zapobiegać wykluczeniu”

    Equilibrium Speciation in Moderately Concentrated Formaldehyde–Methanol–Water Solutions Investigated Using <sup>13</sup>C and <sup>1</sup>H Nuclear Magnetic Resonance Spectroscopy

    No full text
    We used <sup>13</sup>C and <sup>1</sup>H NMR spectroscopy to examine the equilibrium speciation in formaldehyde–methanol–water solutions at moderate formaldehyde concentrations such as those used in the synthesis of formaldehyde-based organic gels. Concentrations of small methylene glycol oligomers and their methoxylated forms found in these solutions were quantitatively determined over a range of formaldehyde concentrations and methanol–water ratios, and at temperatures between 10 and 55 °C. Using the measured concentrations, equilibrium constants for methylene glycol dimer and trimer formation as well as methoxylation of these oligomers were calculated. Based on this, we developed a quantitative equilibrium model for calculation of formaldehyde-related species concentrations over a range compositions relevant for formaldehyde based sol–gel processes allowing for more rational design of formaldehyde polymerization systems

    Equilibrium speciation in moderately concentrated formaldehyde−methanol−water solutions investigated using 13C and 1H nuclear magnetic resonance spectroscopy

    No full text
    We used 13C and 1H NMR spectroscopy to examine the equilibrium speciation in formaldehyde−methanol−water solutions at moderate formaldehyde concentrations such as those used in the synthesis of formaldehyde-based organic gels. Concentrations of small methylene glycol oligomers and their methoxylated forms found in these solutions were quantitatively determined over a range of formaldehyde concentrations and methanol−water ratios, and at temperatures between 10 and 55 °C. Using the measured concentrations, equilibrium constants for methylene glycol dimer and trimer formation as well as methoxylation of these oligomers were calculated. Based on this, we developed a quantitative equilibrium model for calculation of formaldehyde-related species concentrations over a range compositions relevant for formaldehyde based sol−gel processes allowing for more rational design of formaldehyde polymerization systems
    corecore