8 research outputs found

    Emerging novel porcine parvoviruses in Europe: origin, evolution, phylodynamics and phylogeography

    Get PDF
    To elucidate the spatiotemporal phylodynamics, dispersion and evolutionary processes underlying the emergence of novel porcine parvovirus 2 (PPV2), PPV3 and PPV4 species, we analysed all available complete capsid genes, together with ours, obtained in Europe. Bayesian phylogeography indicates that Romania (PPV2 and PPV4) and Croatia (PPV3) are the most likely ancestral areas from which PPVs have subsequently spread to other European countries and regions. The timescale of our reconstruction supported a relatively recent history of the currently circulating novel PPV species (1920s to 1980s) in the domestic or sylvatic host. While PPV2 strains exhibited a large genetic exchange characterized by significant recombination and gene flow between distinct regions and hosts, PPV3 and PPV4 showed a diversification reflected by the accumulation of geographically structured polymorphisms. The RNA-like evolutionary rates detected inter- and intrahost recombination and the positive selection sites provided evidence that the PPV2-4 capsid gene plays a prominent role in host adaptation

    Disease control tools to secure animal and public health in a densely populated world

    Get PDF
    Animal health is a prerequisite for global health, economic development, food security, food quality, and poverty reduction, while mitigating against climate change and biodiversity loss. We did a qualitative review of 53 infectious diseases in terrestrial animals with data from DISCONTOOLS, a specialist database and prioritisation model focusing on research gaps for improving infectious disease control in animals. Many diseases do not have any appropriate control tools, but the prioritisation model suggests that we should focus international efforts on Nipah virus infection, African swine fever, contagious bovine pleuropneumonia, peste des petits ruminants, sheeppox and goatpox, avian influenza, Rift Valley fever, foot and mouth disease, and bovine tuberculosis, for the greatest impact on the UN's Sustainable Development Goals. Easy to use and accurate diagnostics are available for many animal diseases. However, there is an urgent need for the development of stable and durable diagnostics that can differentiate infected animals from vaccinated animals, to exploit rapid technological advances, and to make diagnostics widely available and affordable. Veterinary vaccines are important for dealing with endemic, new, and emerging diseases. However, fundamental research is needed to improve the convenience of use and duration of immunity, and to establish performant marker vaccines. The largest gap in animal pharmaceuticals is the threat of pathogens developing resistance to available drugs, in particular for bacterial and parasitic (protozoal, helminth, and arthropod) pathogens. We propose and discuss five research priorities for animal health that will help to deliver a sustainable and healthy planet: vaccinology, antimicrobial resistance, climate mitigation and adaptation, digital health, and epidemic preparedness

    Disease control tools to secure animal and public health in a densely populated world

    Get PDF
    Animal health is a prerequisite for global health, economic development, food security, food quality, and poverty reduction, while mitigating against climate change and biodiversity loss. We did a qualitative review of 53 infectious diseases in terrestrial animals with data from DISCONTOOLS, a specialist database and prioritisation model focusing on research gaps for improving infectious disease control in animals. Many diseases do not have any appropriate control tools, but the prioritisation model suggests that we should focus international efforts on Nipah virus infection, African swine fever, contagious bovine pleuropneumonia, peste des petits ruminants, sheeppox and goatpox, avian influenza, Rift Valley fever, foot and mouth disease, and bovine tuberculosis, for the greatest impact on the UN's Sustainable Development Goals. Easy to use and accurate diagnostics are available for many animal diseases. However, there is an urgent need for the development of stable and durable diagnostics that can differentiate infected animals from vaccinated animals, to exploit rapid technological advances, and to make diagnostics widely available and affordable. Veterinary vaccines are important for dealing with endemic, new, and emerging diseases. However, fundamental research is needed to improve the convenience of use and duration of immunity, and to establish performant marker vaccines. The largest gap in animal pharmaceuticals is the threat of pathogens developing resistance to available drugs, in particular for bacterial and parasitic (protozoal, helminth, and arthropod) pathogens. We propose and discuss five research priorities for animal health that will help to deliver a sustainable and healthy planet: vaccinology, antimicrobial resistance, climate mitigation and adaptation, digital health, and epidemic preparedness

    Recent advances in studies on biochemical and structural properties of equilibrative and concentrative nucleoside transporters

    No full text
    Nucleoside transporters (NT) facilitate the movement of nucleosides and nucleobases across cell membranes. NT-mediated transport is vital for the synthesis of nucleic acids in cells that lack de novo purine synthesis. Some nucleosides display biological activity and act as signalling molecules. For example, adenosine exerts a potent action on many physiological processes including vasodilatation, hormone and neurotransmitter release, platelet aggregation, and lipolysis. Therefore, carrier-mediated transport of this nucleoside plays an important role in modulating cell function, because the efficiency of the transport processes determines adenosine availability to its receptors or to metabolizing enzymes. Nucleoside transporters are also key elements in anticancer and antiviral therapy with the use of nucleoside analogues. Mammalian cells possess two major nucleoside transporter families: equilibrative (ENT) and concentrative (CNT) Na+-dependent ones. This review characterizes gene loci, substrate specificity, tissue distribution, membrane topology and structure of ENT and CNT proteins. Regulation of nucleoside transporters by various factors is also presented

    Long-term ammonium nutrition of Arabidopsis increases the extrachloroplastic NAD(P)H/NAD(P)(+) ratio and mitochondrial reactive oxygen species level in leaves but does not impair photosynthetic capacity

    No full text
    Ammonium nutrition has been suggested to be associated with alterations in the oxidation-reduction state of leaf cells. Herein, we show that ammonium nutrition in Arabidopsis thaliana increases leaf NAD(P)H/NAD(P)(+) ratio, reactive oxygen species content and accumulation of biomolecules oxidized by free radicals. We used the method of rapid fractionation of protoplasts to analyse which cellular compartments were over-reduced under ammonium supply and revealed that observed changes in NAD(P)H/NAD(P)(+) ratio involved only the extrachloroplastic fraction. We also showed that ammonium nutrition changes mitochondrial electron transport chain activity, increasing mitochondrial reactive oxygen species production. Our results indicate that the functional impairment associated with ammonium nutrition is mainly associated with redox reactions outside the chloroplast

    A Diagnostic Device for In-Situ Detection of Swine Viral Diseases: The SWINOSTICS Project

    No full text
    In this paper, we present the concept of a novel diagnostic device for on-site analyses, based on the use of advanced bio-sensing and photonics technologies to tackle emerging and endemic viruses causing swine epidemics and significant economic damage in farms. The device is currently under development in the framework of the EU Commission co-funded project. The overall concept behind the project is to develop a method for an early and fast on field detection of selected swine viruses by non-specialized personnel. The technology is able to detect pathogens in different types of biological samples, such as oral fluids, faeces, blood or nasal swabs. The device will allow for an immediate on-site threat assessment. In this work, we present the overall concept of the device, its architecture with the technical requirements, and all the used innovative technologies that contribute to the advancements of the current state of the art
    corecore